&) UNICOM'Global

Putting IT All Together.*

Multichannel Bank
Transformation Toolkit

Extension Development Guide
8.2

@ UNICO M®Systems, Inc.

A Division of UNICOM Gilobal

Publication information
(September 2016)

Information in this publication is subject to change.
Changes will be published in new editions or technical
newsletters.

Documentation set
The documentation relating to this product includes:

= Multichannel Bank Transformation Toolkit Functional
Developer User Guide

Copyright notice

Multichannel Bank Transformation Toolkit (the Programs
and associated materials) is a proprietary product of
UNICOM Systems, Inc. - a division of UNICOM Global.
The Programs have been provided pursuant to License
Agreement containing restrictions on their use. The
programs and associated materials contain valuable trade
secrets and proprietary information of UNICOM Systems,
Inc. and are protected by United States Federal and non-
United States copyright laws. The Programs and associated
materials may not be reproduced, copied, changed, stored,
disclosed to third parties, and distributed in any form or
media (including but not limited to copies on magnetic
media) without the express prior written permission of
UNICOM Systems, Inc., UNICOM Plaza Suite 310, 15535
San Fernando Mission Blvd., Mission Hills, CA 91345
USA.

Multichannel Bank
Transformation Toolkit

© Copyright 1998-2016 All Rights Reserved. UNICOM
Systems, Inc. — a division of UNICOM Global.

No part of this Program may be reproduced in any form or
by electronic means, including the use of information storage
and retrieval systems, without the express prior written
consent and authorization of UNICOM Systems, Inc.

No part of this manual may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
without prior written permission from UNICOM Systems,
Inc.

Disclaimer

We cannot guarantee freedom from, or assume any
responsibility or liability for technical inaccuracies or
typographical errors. The information herein is furnished
for informational use only and should not be construed as a
commitment by UNICOM Systems, Inc. — a division of
UNICOM Global.

Trademarks

The following are trademarks or registered trademarks of
UNICOM Systems, Inc. in the United States and/or other
jurisdictions worldwide: Multichannel Bank
Transformation Toolkit, UNICOM, UNICOM Systems.

Trademark acknowledgements

Macro 4 and Other Divisions of UNICOM Global:
Macro 4, SoftLanding, UNICOM.

IBM:

IBM®, AIX®, CICS®, CICS/ESA®, CICS TS® CMACE,
DB2®, DFSMS/MVS®, Domino®, ESCON®, IMS™,
Internet Ex; lorer®, iSeries®, Language Environment®,
LE®, Lotus™, MQSeries®, MVS™, MVS/ESA®,
OMEGAMON®, 05/390%, 0S/400®, Power®
POWER®, pSeries®, RACF®, RMF™, $/370®, $/390®,
SMF®, System/390®, System i®, System p®, System Z®,
VisualAge®™, VM/ESA®, VSE/ESA®, VTAM®,
WebSphere®, z/ OS®, Z/VM®, Z/VSE®, zSeries®,

z Systems® and the IBM logo are trademarks or registered
trademarks of IBM Corporation in the United States or
other countries or both.

Microsoft:

Active Directory, Excel, Microsoft, Notepad, PowerPoint,
Visual Basic, Windows, Windows 2000, Windows NT,
Windows Server 2003, Windows Server 2007, Windows
Vista, Windows XP, WordPad and/or other Microsoft
products referenced are either trademarks or registered
trademarks of Microsoft Corporation.

Adobe Systems Incor%orated:
Adobe® and Acrobat® are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United
States and/or other countries.

Apache Software Foundation:
Apache, Apache Tomcat and Tomcat are trademarks of the
Apache Software Foundation.

Apple Inc.:

AirPrint, iPad and Safari are trademarks or registered
trademarks of Apple Inc. registered in the United States
and other countries.

BEA Systems, Inc.:
JRockit and WebLogic are registered trademarks of BEA
Systems, Inc.

BMC Software Inc.:
Boole & Babbage, Data Packer, Optimizer and Super
Optimizer are trademarks or registered trademarks of BMC

Software, Inc., or its affiliates or subsidiaries (collectively,
“BMC Software”).

BSD:

PostgreSQL is distributed under the classic BSD license.
(Portions Copyright © 1996-2006, PostgreSQL Global
Development Group; Portions Copyright © 1994-1996
Regents of the University of California.)

CA, Inc.:

CA ACF2, CA Datacom, CA Endevor, CA IDMS, CA
InterTest, CA NetMaster, CA Optimizer, CA Panexec, CA
Panvalet, CA Ramis, CA Telon and CA Top Secret are
registered trademarks of CA, Inc.

Candescent SoftBase LLC:
SoftBase® is a registered trademark of Candescent SoftBase
LLC.

Canonical Ltd:
Ubuntu is a registered trademark of Canonical Ltd.

Chicago-Soft, Ltd.:
QuickRef is a trademark of Chicago-Soft, Ltd.

Cincom Systems, Inc.:
MANTIS is a registered trademark of Cincom Systems, Inc.

Computer Sciences Corporation:
Hogan and Hogan Umbrella are trademarks or registered
trademarks of Computer Sciences Corporation.

Compuware Corporation:
Abend-AID and Compuware are trademarks or registered
trademarks of Compuware Corporation.

Dell Inc.:
Dell and the Dell logo are trademarks of Dell Inc.

Emtex Limited:
Emtex and VIP are trademarks of Emtex Limited.

Jean-loup Gailly and Mark Adler:
zlib is a registered trademark or trademark of Jean-loup
Gailly and Mark Adler.

GNU General Public License:
Cygwin is free software released under the GNU General
Public License.

Google Inc.:
Google and Google Chrome are registered trademarks of
Google Inc.

Hewlett-Packard Development Company, L.P.:

HP and HP-UX are registered trademarks of Hewlett-
Packard Development Company, L.P., and/or its
subsidiaries.

Innovation Data Processing:
IAM is a registered trademark of Innovation Data
Processing Corporation.

Kofax, Inc.:

Kofax, the Kofax logo and Kofax Capture are the
trademarks or registered trademarks of Kofax, Inc., in the
United States and other countries.

Linus Torvalds:
Linux is a registered trademark of Linus Torvalds.

Massachusetts Institute of Technology (MIT):
Kerberos is a trademark of the Massachusetts Institute of
Technology (MIT).

Merrill Pty Ltd.:
MXG is a registered trademark of Merrill Pty Ltd.

Mozilla Foundation:
Firefox is a registered trademark of the Mozilla Foundation.

Mozilla Public License:
Expat is free software released under the Mozilla Public
License.

Novell, Inc.:
openSUSE is a registered trademark of Novell, Inc.

The Open Group:
UNIX is a registered trademark of The Open Group.

Oracle Corporation:

EJB, Java, JDBC, JDK, JMX, JRE, JSP, JVM, Solaris and
SunOS are trademarks or registered trademarks of Oracle
Corporation and/or its affiliates. Oracle is a registered
trademark, and other Oracle product names, service
names, slogans or logos are trademarks or registered
trademarks of Oracle Corporation.

Red Hat, Inc.:

Red Hat, Red Hat Enterprise Linux, the Shadowman logo
and JBoss are registered trademarks of Red Hat, Inc. in the
United States and other countries.

SAP AG:

SAP, the SAP logo, the SAP Partner logo, SAP R/3, SAP
ArchiveLink, SAP NetWeaver, SAPPHIRE and Duet are
trademarks or registered trademarks of SAP AG in
Germany and in several other countries.

SAS Institute Inc.:

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries.

Simon Tatham:
PuTTY is copyright Simon Tatham.

Software AG:

Adabas and Natural are registered trademarks of Software
AG. Software AG and all Software AG products are either
trademarks or registered trademarks of Software AG
and/or Software AG USA, Inc.

SPARC International, Inc.:

SPARC is a registered trademark of SPARC International,
Inc. (Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.)

Standardware Inc.:
COPE is a trademark of Standardware Inc.

Sun Microsystems, Inc.:

Sun, Sun Microsystems, the Sun logo, MySQL and Solaris
are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the United States
and other countries.

SUSE LLC:
SUSE is a registered trademark of SUSE LLC in the United
States and other countries.

Syncsort Inc.:
Syncsort is a registered trademark of Syncsort Inc.

Wireshark Foundation:
Wireshark and the “fin” logo are registered trademarks of
the Wireshark Foundation.

XEROX CORPORATION:
XEROX, The Document Company and the stylized X are
trademarks of XEROX CORPORATION.

X.Org Foundation:
X Window System is a trademark of the X.Org Foundation.

Additional trademarks and registered trademarks are the
property of their respective owners.

Chapter 1

Chapter 2

Chapter 3

Contents

Aboutthismanual............................. 9
Release levels. 10
CONVENHONS. « . ¢\ttt et e e e e e e e e e 10
BTTOverview 11
Environment Preparation 13
Plug-in Project Setupo 14
Runtime Project Setup. 16
Dojo Widget Extension 17
Enable customized widget in XUI Editor. 19
Define awidgetinxmlfile i il 19
Display widget in XUI Editor. i it 22
Importwidget 23
Create widget mapping.t 25
Enable customized widget in runtime. o oL 28
Implement JSPtaghandler.......... L. 28
Register JSPtaghandler........... il 29
Dijit implementation. 29
JSPtemplate 29
Enable customized widget in previewmode o oL 30
Register JSPtaglib. o . 30
Modify JSPtemplate. 31
Advanced tOpics 32
Customized Property Editor. ool 32
New Property Tab. o 33
Customized Property Mapping Rule 33
ECA supporto 34
NLS supporto 35
BTT Context databinding o ... 36

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

6 Contents

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

XUI Generation Template. o i i 36
XUI page generation from BTT contextdata......................... 37
Change default behavior of XUI generation. 39
Extend Table Column Widget. 41
How to add version control on runtime NLSfiles 45
Data Type Extension. 47
Implement data type extension L 48
Declarenew datatype i i 48
Implement type validator. o i 49
Implement type converter i 50
Implement type presentation widget o 52
Data type extension sample o 53
Web Services Extension 61
Web services Tool Extension. 62
ID Mapping during self-defined operation generation.................. 62
Web services Runtime Extension.ot .. 66
Web services Runtime Overview, 66
Extend WS Handler and WS Connector 66
Channel Policy Management and Extension 69
Channel level policy management. 71
Implement channel policy handler 71
Define rule provider service. o ool 72
Configure policy for channels oo 73
Exceptionhandling 73
Operation level policy management 75
Implement OpStep for operation level policy 75
Configure operation.o 76
Channel policy sample 77
Howtorunthesample............... o i i 77
Process Editor Extension 79
Extend processor editor object.o o ool 81
Create configuration file for palette object 81
Processor editor extension sample.......... ool 93
ClientPromptState sample o i 93
AlphHtmlProcessorsample o il 94
Global Function Extension 97
Extend global functions i il 100
Implement global functions o oo 100
Describe global functionsinxml.............. o L 101
Register for tooling. 102
Register forruntime L 104
Global Function Extension Sample 105

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

Contents 7

Chapter 9 Generated JS File Name Extension 107
Extend generated JS file namingrule.............o o ool 108

Implement namingrule i il 108

Register implementation. ool 108

Chapter 10 Naming Conventions Extension. 111
Extend naming conventionsiiiiiiiiiii i 112

Extend rule by registering new naming conventionrule 112

Extend by registering new naming manager class. 117

Chapter 11 Multi-project Support in Extension 121
Handle projectprefix 123

Chapter 12 Pagination Extension 125
Extend technical pagination operation., 127

Pagination parameters. i 129

Register customized technical pagination operation 131

Chapter 13 Client State Extension. 133
Step 1: Extend a Client State 134

Implement state class i i 134

Register the implementation classintobttxml 135

Step 2: Enable the extended State in Transaction Editor 136

Create configuration file for the extended clientstate. 136

Register extended client state into the palette 136

Create configuration file for mappingrules.......................... 137

Register mappingrules............ il 138

Step 3: Extend navigation engine to register command handler. 140

Extend the navigation engine to register a command handler........... 140

Step 4: Add the reference of new navigation engine to template 142

Chapter 14 Reference Sample Topics 143
How to extend a global function invoked in ECA action 144

Define global functionin XML 144

Register global function definition as Eclipse extension................ 144

Implement JavaScript for global function 145

Enable XUI editor aware of this global function...................... 146

How to extend a global function to manipulate collectiondata 147

Define global functionin XML, 147

Register global function definition.................. 147

Implement the function logic to calculate the sum of account balance148

Register the implementation class of global function 149

Usage Scenario of the global function in mapping editor............... 149

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

8 Contents

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

About this manual

As a multi-channel application development toolkit, the Multichannel Bank
Transformation Toolkit (BTT) implements a set of common and reusable
components for channel application development.

Furthermore, BTT provides tools for developers to implement channel applications
more efficiently and easily. At the same time, for a channel application, there are
some project specific reusable components and facilities that need to be
implemented by application developers. BTT provides this capability for
application developers to implement project level reusable components and
integrate them with BTT framework.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

10 About this manual = Release levels

Release levels

Macro 4 product release levels are of the form n.nnn. Minor software updates are
reflected by a change in the last two digits, and do not necessarily cause the
documentation to be reissued.

Conventions

The following typographic conventions are used:

boldface Indicates a command or keyword that you should type, exactly
as shown.
italics Indicates a variable for which you should substitute an

appropriate value.

monotype Indicates literal input and output.
Ctrl+D Indicates two or more keys pressed simultaneously.
[] Brackets surround an optional value.

| Vertical bars separate alternative values from which you must
make a selection.

Ellipsis indicates that the preceding element may be repeated.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 1

BTT Overview

As a multi-channel application development toolkit, BTT implements a set of
common and reusable components for channel application development.
Furthermore, BTT provides tools for developers to implement channel applications
more efficiently and easily. At the same time, for a channel application, there are
some project specific reusable components and facilities that need to be
implemented by application developers. BTT provides this capability for
application developers to implement project level reusable components and
integrate them with BTT framework.

The figure below shows the relationship of BTT framework, BTT extensions and
the bank channel application.

(Bank Channel Application. \

~N

(BTT Runtime Extensions and Tool
Customizations.

S >,

BTT classifies BTT application developers into two types according to their roles:

= Infrastructure developer: Infrastructure developers have deep knowledge on
BTT and related technologies such as OOP and Java EE. As Infrastructure
developers, they are responsible for designing and implementing the project
specific components and tool functions.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

11

12 CHAPTER 1 = BTT Overview -

* Functional developer: Functional developers have a little knowledge on
BTT and related technologies. As Functional developers, they implement
specific transactions that include user interfaces, operation logics and
transaction flows. Development productivity is one of the primary
considerations for Functional developers.

The development phase should make use of the reusable components and largely
improve the productivity of channel application development.

A typical BTT application project has two development phases.

* Infrastructure development phase: where the Infrastructure developers
design and implement project specific reusable components as BTT extensions
and customize BTT tools for these extensions if necessary.

* Incremental development phase: where the Functional developers use the
tools provided by BTT and the infrastructure phase extensions to develop all
the transactions.

The figure below shows the skill distribution in the infrastructure development and
incremental development phases.

Functional

Developers

Time

A J

In the infrastructure development phase, the Infrastructure developers should
consider these BTT extensions for a specific project:

= (Table Column) Widget extension

= JSP, UI and transaction template customization
* Generated JavaScript file name extension

= Processor editor extension

= Naming convention extension

= Basic data type extension

* Channel policy extension

= Web services connector extension

= Global functions extension

= Client state extension.

This document gives details on each of these BTT extensions and how to
implement them.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 2

Environment Preparation

A typical BTT extension development extends the BTT runtime functions to meet
specific project requirements. At the same time, it will also customize the BTT tool
facilities to use the runtime extension effectively. When developing BTT
extensions, Infrastructure developers usually create two projects:

BTT XUI Web Project that includes the extensions for runtime.

Plug-in Project that includes the extensions for tool customization.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

13

14 CHAPTER 2 = Environment Preparation = Plug-in Project Setup

Plug-in Project Setup

This is the procedure to prepare the environment for an Eclipse plug-in project to
customize the BTT tool.

1 Create a standard Eclipse plug-in project.

a Go to the Eclipse Resources page for information on how to create an
Eclipse Plug-in Project.

2 Add Plug-in dependencies.

a Open the plugin.xml file for the plug-in project.

b Click the dependencies tab.

¢ Add these plug-ins:
org.eclipse.ui
org.eclipse.core.runtime
org.eclipse.core.resources
org.eclipse.draw2d
org.eclipse.ui.forms
org.eclipse.ui.ide
org.eclipse.ui.views.properties.tabbed
com.ibm.btt.core
com.ibm.btt.tools.xui.editor2
com.ibm.btt.tools.common
com.ibm.btt.tools.transaction
com.ibm.btt.tools.transaction.diagram
com.ibm.btt.tools.transaction.dominate
com.ibm.btt.tools.transaction.edit

com.ibm.btt.tools.transaction.editor

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

http://www.eclipse.org/resources/

CHAPTER 2 = Environment Preparation = Plug-in Project Setup 15

Required Plug-ins
Specify the list of plug-ins required for the operation of this plug-in.

%-org.eclipse.ui

%-org.eclipse.core.runtime
%-org.eclipse.core.resources (3.6.0)
%-org.eclipse.draw2d (3.6.0)
%-org.eclipse.ui.forms (3.5.0)
%-org.eclipse.ui.ide (3.6.0)
%p-org.eclipse.ui.views.properties.tabbed (3.5.100)
“=com.ibm.btt.core (7.1.0)

%= com.ibm.btt.tools.common (7.1.0)
%p=com.ibm.btt.tools.perspective (1.0.0)

% com.ibm.btt.tools.transaction (7.1.0)
%p-com.ibm.btt.tools.transaction.diagram (/.1.0)
% com.ibm.btt.tools.transaction.dominate (7.1.0)
%.com.ibm.btt.tools.transaction.edit (7.1.0)i
%-com.ibm.btt.tools.transaction.editor (7.1.0)
#=com.ibm.btt.tools.xui.editor2 (7.1.0)

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

16 CHAPTER 2 = Environment Preparation = Runtime Project Setup

Runtime Project Setup

This is the procedure to establish a BTT XUI Web Project for implementing BTT
runtime extensions.

1 Right click the plug-in project you created in ‘Plug-in Project Setup’ on page 14.
2 Click Run As > Eclipse Application.

Bun hs V& 1 Eclipse fpplication Alt+3hift+X, E
Debug hs VUEG 2 Tava Applet ALHSHE FHHE, A
Erofile 4= Y 593 Tava hpplication KLeHShi £, T
Team ' & 4 0561 Framework ALtHSHEFHHE, O
Compare Yith b

Restore Zrom Local Historw. .. Bun Configurations. ..

3 In the Eclipse application instance, create a new BTT XUI Web Project.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

17

CHAPTER 3

Dojo Widget Extension

BTT dojo widgets wrap the dijit widgets with BTT context binding support. BTT
dojo widgets have the similar functions as the dijit widgets. Meanwhile, they can be
bundled with BTT context and data automatically in BTT framework. Functional
developers could use the BTT XUI editor to compose a page just by dragging and
dropping BTT dojo widgets without any coding work.

The BTT framework provides the capability for Infrastructure developers to
implement project- specific widgets and import them into the palette of XUI editor.
Functional developers can then use these widgets in XUI editor in the same way as
the original BTT widgets. Three parts are required to develop a project-specific
BTT dojo widget:

= Make widgets available in XUI editor, including:
* Define a widget with xml file
= Register the widget as an extension of plug-in project
* Implement Java classes to show the widget in XUI editor
* Define mapping rules for XUI generation with xml file (Optional)
* Register the mapping rules as an extension of plug-in project (Optional).
» Generate HTML and JavaScript code from JSP tag, including:
* Register tags in JSP tag library file
* Implement JSP tag handlers.
= Present a widget in browser, including
* Implement related JavaScript for the widget.

The figure shows the relationship of the extensions.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

18 CHAPTER 3 = Dojo Widget Extension =

o H ISP generation _ _ __ _________

Widget Definitions for
JSP-

Runtime generation«

B

User Interface«

Note Blocks with dashed lines are created by Functional developers or generated
by BTT tools automatically.

Blocks with solid lines are implemented by Infrastructure developers as
BTT extensions.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 3 = Dojo Widget Extension = Enable customized widget in XUI Editor 19

Enable customized widget in XUI Editor

The tasks below enable a customized widget in XUI editor:

* Define a widget in xml file

* Implement a widget figure class to show the widget in XUI editor
* Register a widget as an extension of the BTT plug-in

= Register a mapping rule for generating widgets to JSP tags.

Define a widget in xml file

BTT defines a widget in an xml file. The xml file describes:
= how the widget is shown in XUI editor

= the properties of the widget

= how to edit the properties of the widget.

The sections that follow describe the tags in the widget definition XML file.

Figure tag

It defines how to display widgets in the XUI editor by specifying the displaying the
class. There are two types of figure classes for implementation, draw2d and SWT.
These are described in ‘Display widget in XUI Editor’ on page 22. The table below
gives the attributes for a figure tag.

Attribute Description

type The type of implementation the class used to show the widget in
XUI editor. The available values are draw2d and SWT.

class The implementation class used to show the widget in XUI editor.

style Only available for the SWT type figure to provide style
information.

Property tag

The table below gives the attributes for the property definition element.

Attribute Description

name The identifier of the property.

default The default value of this property.

type The type of predefined property editor for this property. The

value could not be arbitrary, which should be selected from
the registered type list described in ‘Figure tag’ on page 19.

Default value: String

showInEditor Determines whether to display this property in the widget
property view.

Default value: true

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

20 CHAPTER 3 = Dojo Widget Extension = Enable customized widget in XUI Editor

Attribute Description

showlnExpression Determines whether to display this property in the ECA
action list.

Default value: false

showInAction Determines whether to display this property in the ECA
action list.

Default value: false

Description The description of this property, which is NLS aware.

Level Reserved in current release.

Widget tag

The table below gives the predefined types for the type attribute of the widget

definition.

Type Description

String Determines the visibility of the widget. Its available
values are: visible,
hidden and gone.

Visibility Determines the visibility of the widget. Its available
values are: visible,
hidden and gone.

Boolean Basic Boolean type. Values are: true and false.

ButtonType Determines the type of a button widget. Values are:
button, submit, reset, submit with no data and submit
without validation.

KeyBinding Determines the shortcut key of the widget.

DataName The name of field, data or KeyedCollection in BTT
context.

DataNameList The name of IndexedCollection in BTT context. This
type is used for widgets like Combo, SelectList and
Table.

DataNameTreeContent The name of the Tree widget data in the BTT context.

Image The image of the widget
NLS String with NLS
ErrorLevel Determines the level of error info. Values are: ERROR,

INFO and WARN
Integer The integer type of the property

OperationName The name of operation.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 3 = Dojo Widget Extension = Enable customized widget in XUI Editor 2 1

Event tag

The table below gives the attributes for an event definition tag.

Attribute Description

Name The identifier of the event

Description The description of the event which is NLS.

Function tag

The table below gives the attributes for a function definition tag.

Attribute Description

name The identifier of the function

description The description of the function which is NLS
showInAction Determines whether to display this function in the ECA

action list

showInExpression Determines whether to display this function in the ECA
expression panel

returnType The return type of the function. Values are: String, Number
and Boolean

parameter The parameter of the function

Parameter tag

There is usually more than one parameter tag for each function element. The table
below gives the attributes for each parameter tag.

Attribute Description

name The name of the parameter
description The description of the parameter
type The type of the parameter

Below is a sample of a widget definition:

<widget xmlns="http://btt.ibm.com/WidgetSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://btt.ibm.com/WidgetSchema
WidgetSchema.xsd ">

<figure type="draw2d" class="org.eclipse.swt.widgets.Button'
style="TOGGLE" />

<properties>

<!-- common properties -->

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

22 CHAPTER 3 = Dojo Widget Extension = Enable customized widget in XUI Editor

<property name="id" type="String"/>

<property name="width" default="50" />

<property name="height" default="28" />

<property name="visibility" default="visible"
type="Visibility"showInAction="true" showlnkExpression="true"
description="%desc_prop_visibility" />

<property name="icon" type="Image" showInAction="true"
showInEditor="true" showInExpression="true"
description="%desc_prop_icon" />

<property name="ontext" type="String" />
<property name="offtext" type="String" />

</properties>
<events>

<event name="onClick" description="%desc_event_onclick" />
<event name="onKeyDown" description="%desc_event_onkeydown" />
<event name="onKeyPress" description="%desc_event_onkeypress"
/>

<event name="onKeyUp" description="%desc_event_onkeyup" />
<event name="onMouseDown"
description="%desc_event_onmousedown" />

<event name="onMouseUp" description="%desc_event_onmouseup" />

<event name="onMouseEnter"
description="%desc_event_onmouseenter" />

<event name="onMouseleave"
description="%desc_event_onmouseleave" />

<event name="onMouseMove"
description="%desc_event_onmousemove" />

<event name="onChange" description="%desc_event_onchange" />
</events>
<functions>

<function name="isFocusable" showInAction="false"
showInExpression="true" returnType="Boolean"
description="%desc_func_isfocusable" />

<function name="focus" showInAction="true"
showInExpression="false" description="%desc_func_focus" />

</functions>

</widget>

Display widget in XUI Editor

To display the customized widget in XUI editor, Infrastructure developers need to

implement a figure class to present this widget. There are two types of figure class
could be used: draw2D and SWT.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 3 = Dojo Widget Extension = Enable customized widget in XUI Editor 23

draw2D shows a widget in the XUI editor with an image. This type of figure class
can be easily implemented, but its look does not change when you edit the widget
properties in the XUI editor. SWT type figure is a standard Eclipse SWT widget. It
supports dynamic change when you edit the widget properties in XUI editor, such
as changing text of widget.

To implement draw2D type figure, Infrastructure developers can either directly
extend from the class org.eclipse.draw2d.Shape, or extend from
com.ibm.btt.tools.xui.editor2.figure.LabelShape, which provides more
facilities to implement. If the figure class extends from
com.ibm.btt.tools.xui.editor2.figure.LabelShape, load an image as a
label icon and refresh in its constructor method. Sample code as below:

getlabel().setIcon(Activator.
getImageDescriptor("images/AccountWidget.PNG").createlmage());

refresh();

For the SWT type figure, Infrastructure developers should follow the Eclipse SWT
specification to implement any necessary SWT widget.

Import widget

To enable the customized widget available in XUI editor, Infrastructure developers
need to add an extension for this widget in the plugin.xml file of the extension plug-
in project. To import a widget:

1 Open the plugin.xml file.

Click the Extensions tab.

Click Add.

In the Extension Point Filter field, input com.ibm.btt,
Click com.ibm.btt.tools.xui.editor2.widgets.

Click Finish.

A 1 A W N

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

http://www.eclipse.org/swt/

24 CHAPTER 3 = Dojo Widget Extension = Enable customized widget in XUI Editor

.New Extension !E[E
Extension Point Selection

Create a new com.ibm.btt,rop.ui.editor extension, ‘_:j

Extension Points | Extension Wizards

Extension Point filker: |c0m.ibm.btt

== corn.ibrm. btt. core. extension

== com.ibm.btt. tools, i, editor 2. generator
== com.ibm.btt, tools, xui,editor 2, properties
B [com.ibrm. bEE b gets

[+ Show anly extension poinks from the required plug-ins

Extension Point Description: com.ibm.btt.rep.xuieditor
[Enter description of this extension point]

Available templates For com.ibm. bk, rop.oui.editer:

'i?_:] = Back. | Mext = | Finiish I Cancel |

7 Right click com.ibm.btt.tools.xui.editor2.widgets then click New > widget.

If you click New > category, a new widget category will be created to group
widgets in the palette of XUI editor.

% Extensions

All Extensions a

I = Exten
Define extensions For this plug-in in the Following section, Set th
denat
filker bext
hfpe ilker ke o

@W —
category

Delete

@ Show Description
1) Open Schema
57 Find Dedlarat on

57 Find References

of Cut Chrl+3
= Copy Chrl+C
Paste Chrl+y
Rewerk
Save

Externalize Strings...

8 In the Extension Element Details dialog box, type the applicable
information.

name: The value of this field serves as widget id, so it should be unique.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 3 = Dojo Widget Extension = Enable customized widget in XUI Editor 25

= label: The value of this field is the display name of the widget which will be
shown in palette. It supports NLS.

* icon: This field allows users to select an image to display the widget in the
palette of XUI editor. Image in 16x16 pixels is recommended as it is
consistent with existing BTT widgets.

* category: This field allows users to input the category which the widget
belongs to.

= config: This field allows users to select the widget definition file described
in ‘Define a widget in xml file’ on page 19.

= container: This field allows users to set if the widget has the ability to
contain other widgets (true) or not (false).

» description: This field requires the user to input a short description for a
widget.
Extension Element Details

Set the propertizs of "widget”, Required fields are denoked by

[[FA]

name*; ToggleButton
label*: ToqgleButkon
can™: ICons) | ogglebutton, Pria Browse, .,

category*: WBlphaSampletvidgets

config*;:

conkainer®: False

[~]

description:

Create widget mapping

After Functional developers complete composing the XUI file and when they select
Generate Dojo Page function, BTT tools automatically generate the JSP file for this
XUI file. In order to generate proper JSP tags for the customized widget,
Infrastructure developers need to create a new widget mapping file and register it
as BTT plug-in extension.

Create widget mapping file

= In a widget mapping file, there should be one mappings tag for which there is
only one attribute:

= prefix: the prefix text of tags when mapping widget to JSP tags. The value
should be the same as the prefix attribute of tablib directive in JSP file.

= FEach widget requires a widget-mapping element to describe how BTT maps
this widget to a JSP tag. The widget-mapping tag has two attributes:

* widgetName: the name for the given widget. It should match with the
name defined in the widget extension described in ‘Import widget’ on
page 23.

= tagName: the JSP tag name for this widget.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

26 CHAPTER 3 = Dojo Widget Extension = Enable customized widget in XUI Editor

By default, each widget property name will be mapped into the same attribute
name of the JSP tag directly. To customize property mappings, Infrastructure
developers can define a property-mapping element to specialize the mapping
from widget property to a tag attribute. There are 3 attributes for the property-
mapping tag:

* propName: the name of the property which should be the same as the
name defined in widget definition file described in ‘Implement JSP tag
handler’ on page 28.

= attrName: the name of the attribute which maps a property to a JSP tag.

* rule: the property mapping rule which can handle more flexible property
mapping scenarios.

To find out how to implement a property mapping rule, see ‘Customized Property
Mapping Rule’ on page 33. Below is a snippet from a widget mapping file:

<mappings prefix="bttdojo:">

<widget-mapping widgetName="AccountWidget" tagName="account">
<property-mapping propName="TabelColor" attrName="color" />

<property-mapping propName="balanceColor"
rule="RGBValueRule" />

</widget-mapping>

</mappings>

Register widget mapping

1

u A W N

In the Extensions tab of plugin.xml file.
Click Add.
Click com.ibm.btt.tools.xui.editor2.generator.

Click Finish.

Right click com.ibm.btt.tools.xui.editor2.generator then click
New > mapping.

% Extensions

All Extensions +az — Extension Details
Define extensions For this plug-in in the Following section, Set the properties of the sel
denoted by "*",

Filkor kot
':ypc ilbcr bl D

Add, Mame:

=:n= com.ibm, btk tools, xui. editor 2, widgets .
Mew 4 layoubGen

g -0 .ibm, bt b ditorz.g

Delete I
rule

@ Show Description

widgetGen
19) Open Schema

i declaring extension ¢

57 Find Dedlaration

57 Find References
of Cut Chrl+3
= Copy Chrl 12
Paste Chrl+y

Rewvert
Save

Externalize Strings. ..

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 3 = Dojo Widget Extension = Enable customized widget in XUI Editor 27

6 In Extension Element Details dialog box, click the mapping file defined
previously into the file field.

Extend Default Widget Generator

A widget generator is used to map the XUI widget into a JSP tag according to the
widget mapping file described previously. Infrastructure developers should
implement and register a new widget generator by extending the default one to
meet the project-specific scenario, such as supporting new mapping properties for
extended widget.

To implement a new widget generator, Infrastructure developers should extend the
class com.ibm.btt.tools.xui.editor2.generator.WidgetGenerator and
override the method:

public void generate(StringBuffer buffer)

The method is invoked to generate JSP tag for a widget and the generated text need
to be appended into the buffer object.

To register a new widget generator, Infrastructure developers should follow the
procedure below.

1 Open the Extensions tab of plugin.xml file.
Click Add.
Click com.ibm.btt.tools.xui.editor2.generator.

Click Finish.

u o W N

Right click com.ibm.btt.tools.xui.editor2.generator then click
New > widgetGen.

6 In the Extension Element Details dialog, type the applicable information.
* class: choose the new widget generator class implemented previously.

* target: select the class
com.ibm.btt.tools.xui.editor2.model.impl. WidgetModel

* priority: select medium or high to override default widget generator.

* name: type the name of this generator.

Extension Element Details

Set the properties of "widgetGen”, Required fields are denoted by
ngn

Llasst! n:n:nm.il:nm.l:-tt.alphasampla.generatar.WidgetGu

karget®: btt.tools.<ui.editorz, model impl. WidgetModel | | Browse...

Ml

priority*: medinn

name: Extended Widget Extension

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

28 CHAPTER 3 = Dojo Widget Extension = Enable customized widget in runtime

Enable customized widget in runtime

Implement JSP tag handler

After the new JSP tag for a widget has been generated into a JSP file, it still requires
a tag handler to generate the dynamic HTML content for this new JSP tag at
runtime. This section describes how to implement a JSP tag handler and how to use
it in the BTT framework.

Infrastructure developers do not need to implement a JSP tag handler from scratch.
A new tag handler could be extended from BTT facility classes. BTT provides two
abstract tag handlers for Infrastructure developers to extend.

AbstractTag

LIL

AbstractSimpleTag AbstractBodvTag

The com.ibm.btt.dojo.tag.AbstractSimpleTag class is provided for the
handler that handles the tag and does not contain sub-tags or inner content, such as
a button or label tag. Two methods must be overridden when extending from
AbstractSimpleTag:

protected void initAttributes()

The tag handler needs to put the corresponding DOJO widget type into the
attributes in this method.

protected void initAttributes(){

super.initAttributes();

attributes.put("dojoType", "com.ibm.btt.dijit.Account");
}

protected String getTagName()

The tag handler needs to return the corresponding HTML tag name of the DOJO
widget in this method. If it is not a DOJO widget tag, then return null.
Additionally there are two hook methods for Infrastructure developers to
implement more flexible tag handlers.

protected void beforeGenerateTag(StringBuffer buffer)

The method is used for subclass to inject other JavaScript code or generate hidden
HTML fields before BTT generate dojo code.

protected void afterGenerateTag(StringBuffer buffer)

The method is used for the subclass to inject other JavaScript code or generate
hidden HTML fields after BTT generates dojo code.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 3 = Dojo Widget Extension = Enable customized widget in runtime 29

The com.ibm.btt.dojo.tag.AbstractBodyTag class is provided for a handler
which handles tag contains sub-tags or inner content. For example, table tag may
have nested column tags to describe each column in table.

The AbstractBodyTag handles the logic of generating content for sub-tags Like
extending from AbstractSimpleTag, both initAttributes() and
getTagName () methods must be overridden.

Besides beforeGenerateTag and afterGenerateTag, a new method is provided
for Infrastructure developers to extend.

protected void afterGenerateStartTag(StringBuffer buffer,
Map<String, String> attributes)

As indicated by name, this method is used for subclass to inject the code after
generating the start tag.

Register JSP tag handler

To make sure the implemented JSP tag handler can be used by BTT at runtime.
Infrastructure developers need to create a new JSP lib file to support tags created
for new widgets. The file follows standard JSP tag library schema. You can access

http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary 2 0.xsd for more information.

Dijit implementation

JSP template

Widget JavaScript implementation presents a widget in browser. Infrastructure
developers can implement JavaScript by extending some dijit widget or BTT Dojo
dijit. The widget JavaScript is recommended to extend from
com.ibm.btt.dijit.AbstractWidgetMixin provided by BTT which provides
NLS and visibility functions support. Some implementation samples are provided
by BTT product.

After the JavaScript class for the widget has been implemented, the class needs to
be added into JSP require declaration section by XUI generation. So Infrastructure
developers need to create a new JSP template file or edit the existing BTT JSP
template file to add the required declaration for the new JavaScript class. By
default, JSP template files are in the WebContent/templates folder of XUI web
project.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd

30 CHAPTER 3 = Dojo Widget Extension = Enable customized widget in preview mode

Enable customized widget in preview mode

The BTT XUI editor provides the preview function that lets Functional developers
preview the XUI file in a browser before the file is generated into a JSP file and
deployed on application server. This function benefits Functional developers as
they can see what the XUI file is like in a browser without effort of deploying.

When the XUI file is previewed, the BTT tools will dummy a JSP environment to
invoke JSP tag handler so that it converts a JSP tag into an HTML tag. In order to
make sure the BTT tools invoke the right JSP tag handler, Infrastructure developers
need to register the JSP taglib information in their widget extension project.
Meanwhile, as the preview environment is not a real JSP runtime environment, JSP
code is not executed. Infrastructure developers need to ensure the template does
not contain any JSP code.

Register JSP taglib

Register JSP tag handler in widget extension project

To enable the customized widget in preview mode, Infrastructure developers need
to register the tag library information so that the right HTML code can be
generated for preview. The extension point is
com.ibm.btt.tools.xui.editor2.taglib.

=== com,ibmr.btt, tools, xui.editor 2, taglib

A sample of the configuration is shown in below:

Extension Element Details

Set the properties of “taglib®, Required fields are denaoted by ™,

prefin® bttdojo

Hd= configure/bttdojo. td

= prefix: the prefix text for tags when mapping the widget to JSP.

= tld: the tag library file which follows the standard JSP tag library schema.
Adding a jar file containing JSP tag handler into classpath of
widget extension project

1 Open plugin.xml and click the Runtime tab.

2 In the Classpath area, click Add.

3 Click the jar file that contains the customized JSP tag handlers.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 3 = Dojo Widget Extension = Enable customized widget in preview mode 3 1

Classpath

Specify the librades and Folders that constitute the plug-in classpath,
If unspecified, the dasses and resources are assumec to be at the rook
af the plug-in,

=

2=, biny

=i ibybttgbpest, jar
=i libfgbpbttary.jar
Eilibfgson-1.6.jar
B libjI50M4 ar U

Rernoye

Do

Modify JSP template

As BTT supports developing applications in multi-project mode, some resources
such as JavaScript files and image files are possibly not stored in the same project as
the XUI file to be previewed. In order to make sure the resources in other projects
could be loaded when XUI file is previewed, BTT lets Infrastructure developers
add a special remote project prefix to load these resources.

The prefix is:
<%=JSPUtil.getRemoteProjectURL("[remote project keyl")%>.

The parameter remote project key is the project key configured in btt.xml of
the current project. For example, if document.css is stored in project globalWAR
(key name) and at path /js/dijit/themes/claro/, Functional developers should add a
snippet into the template file as following:

@import “<%=JSPUtil.
getRemoteProjectURL("globalWAR")%>
js/dijit/themes/claro/document.css”

Be aware that although the prefix is in JSP code style, it does not mean BTT
supports JSP code in the template when the XUI file is previewed.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

32 CHAPTER 3 = Dojo Widget Extension = Advanced topics

Advanced topics

In the previous sections of this chapter, we have described the primary steps of
implementing a customized BTT widget. Now, we will go through some advanced
topics when developing new widget.

Customized Property Editor

BTT provides several types of property editors for editing widget properties. They
can be used to edit property types listed in Table X-Y. If there is other type of
property such as Color, Infrastructure developers need to develop and register a
new property editor.

Implement property editor

BTT follows the approach for implementing property editors of the Eclipse
framework. All property editors must extend from the class
org.eclipse.ui.views.properties.PropertyDescriptor. Infrastructure
developers could either use the existing Eclipse property descriptor
implementations or extend the class PropertyDescriptor to implement their own
property editor.

Furthermore, BTT implements an abstract class
com.ibm.btt.tools.xui.editor2.properties.desc.SelectionPropertyDe
scriptor for convenience of Infrastructure developers to implement property
editors like Select List style. When extending the class
SelectionPropertyDescriptor, Infrastructure developers need to override the
method protected String[] getSelections() to return all the possible
options.

Register property editor

To enable the customized property editor used in the XUI editor, Infrastructure
developers need to register the property editor as an extension of the BTT plug-in.
The following steps describe how to register a property editor:

1 Click the Extensions tab of plugin.xml file.
Click Add.
Click com.ibm.btt.tools.common.properties.

Click Finish.

ua A W N

Right click com.ibm.btt.tools.common.properties. then click
New > property.

6 In the Extension Element Details dialog, type the applicable information.

* type: the property type edited by this registered editor. The property type
should be the same as the type attribute value defined in the widget
definition xml file described in ‘Define a widget in xml file’ on page 19.

* class: the implementation class of property editor.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 3 = Dojo Widget Extension = Advanced topics 33

Extension Hement Details
Set the proparties of "property”, Reguirec Fields are denoted by "+,

bype*: simpleCalor

class*: cam,ibr. btk alphasample. editor, properties. desc, SinmpleCalarPr
share: true E

New Property Tab

When Functional developers edit properties of the new widget, Appearance,
Properties and Rules tabs will be shown by default. If the widget has action an
property defined in the widget definition, the Action tab will be shown. If the
widget has styleclass property in the widget definition, the Style tab will be shown.

BTT provides capabilities to add a new property tab for some specific property by
following the Eclipse Tabbed Properties View implementation. If some property
cannot be configured in the Properties tab due to its complexity, Infrastructure
developers could add a new tab for it. For information on how to implement a
property tab and register it as an extension into BTT plug-in, please refer to Eclipse
Tabbed Properties View.

When adding new extensions to
org.eclipse.ui.views.properties.tabbed.propertyTabs and
org.eclipse.ui.views.properties.tabbed.propertySections for the BTT
XUI editor, the field contributorId needs to be set as
com.ibm.btt.rcp.xui.editor2.XUIEditor.

If the new property tab is implemented for a property, Infrastructure developers
need to set the showInEditor attribute of the property to be false in the widget
definition file to ensure the property will not be edited in the Properties tab.

Customized Property Mapping Rule

As described in ‘Create widget mapping’ on page 25, if Infrastructure developers
want to have more flexibility to customize property mapping, they should
implement and register a property mapping rule for specific property type.
Implement property mapping rule

To implement property mapping rule, Infrastructure developers need to implement
interface com.ibm.btt.tools.xui.editor2.generator.IRule and override
the process method.

Register property mapping rule

To enable the implemented property mapping rule used when BTT generates a JSP
file, Infrastructure developers need to register the rule as an extension of BTT plug-
in. The following steps describe how to register a property mapping rule:

1 Click the Extensions tab of plugin.xml.
2 Click Add.

3 Click com.ibm.btt.tools.xui.editor2.generator.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_properties_view.html
http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_properties_view.html

34 CHAPTER 3 = Dojo Widget Extension = Advanced topics

ECA support

4 Click Finish.
Right click com.ibm.btt.tools.xui.editor2.generator then click
New > property.
6 In the Extension Element Details dialog, type the applicable information.

* name: The name of the rule. It should be the same as the rule attribute
value described in ‘Create widget mapping’ on page 25.

* class: The implementation class of this rule.

Extension Element Details
Set the propertes of "rule”. Required Fields are denoted by "+,

name*: RiEEYduefuls|

class*: com.ibn.btt, alphasample, editor, generator,

BTT provides the ECA tool for Functional developers to handle JavaScript
visually. Infrastructure developers may need to expose some functions or events of
customized widget for the ECA tool.

Add Functions for widget

To add widget functions, Infrastructure developers need to define them in the
widget definition file described in ‘Define a widget in xml file’ on page 19. Then
these functions will be used in the ECA tool and be invoked according to ECA rule.
Below is a sample definition:

<function name="setBalance"
showInAction="true"
showInkExpression="true"
returnType="Number"
description="return balance of account" />

Add Events for Widget

To add widget events, Infrastructure developers need to register them into the
widget definition file described in ‘Define a widget in xml file’ on page 19. Then
these events will be used in the ECA tool and be triggered according to the ECA
rule.

<event name="onCTlick"
description="event when button is clicked" />

Monitor ECA Execution

BTT provides an ECA execution monitor to print ECA rule execution traces at
runtime in browser console. For performance consideration, the monitor is
disabled by default. If developers want to print rule execution traces during
development, they can enable the ECA monitor by adding the following code in
the template file for JSP generation:

engine.setMonitor(new com.ibm.btt.event.BaseMonitor());

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 3 = Dojo Widget Extension = Advanced topics 35

The following is a sample output trace of ECA monitor in the browser console.

o}mnitnr Event : forml.onLoaded

o Stzrt Rule : Object { evis=} for event forml.onLozded

o GetProperty Action : chbecrosskank.isChecked=—false

o Evzluzated Condition : Conditior =functioni) , Result=fzlse
o SetProperty Action : bank.readfnly=true

o SetProperty Action : crossBankTee_visibkbility=hidden

o End Rule : Object{ evis=} for event forml.onLoaded

o}mnitnr Event : forml.onLoaded

o Stzrt Rule : Object { evis=} for event forml.onLozded

o GetProperty Action : sms.isChecked=—fzlse

o Evzluzated Condition : Conditior =functioni) , Result=fzlse
o SetProperty Action : cellphone.cellphone=true

o SetProperty Action : cellphonelabel.visibility=hidden

o SetProperty Zction : cellphone.visibility=hidden

o End Rule : Object{ evis=} for event forml.onLoaded
Il&nBundle.getMessage(), key value pairsdecimzlPlacesMessage Object { value=z }
o}mnitnr Event : cbcrossregion.onChange

o Start Rule : Object{ evis=} for event cbcrossregion.onChange
o GetProperty Action : cbcrossregion.isChecked=—true

o Evzluzted Condition : Conditior =Zfunctioni) , Result=true
o SetProperty Action : region.readOnly=false

o SetProperty Action : city.readfnly=false

+ POST http:{/localhost:B080 /BPRuntimeTest/Ajax

End Rule : Object{ evis=} for event cbecrossregion.onChange

K 42ms

e

Customize Default Monitor

Infrastructure developers can customize the ECA rule monitor for their specific
purpose. In this case, they need to write JavaScript code to extend the class
com.ibm.btt.event.BaseMonitor and implement these methods:

= monitorStartRule : function(event, rule).Invoked when begin to
execute a rule.

= monitorEndRule : function(event, rule).Invoked when complete
executing a rule.

= monitorCondition : function(event, rule, result).Invoked when
complete a condition evaluation.

= qmonitorCallFunctionAction : function(id, functionName, args,
result). Invoked when complete calling a function.

= monitorGetPropertyAction : function(id, property, value).
Invoked when complete retrieving a property from a widget.

= monitorSetPropertyAction : function (id, property, value).
Invoked when complete setting a property to a widget.

NLS support

Eclipse already provides for NLS support and BTT follows the same way to enable
a widget supporting NLS. As described above, many description and label fields
support NLS. To leverage NLS provided by Eclipse and BTT, Infrastructure
developers need to:

* Define Bundle-Localization path in MANIFEST.MF

Bundle-Localization entry defines which property files are loaded at runtime for
NLS. This entry definition contains the name and the corresponding property file
used to translate the plug-in strings that start with the prefix %. Below is a sample
definition entry.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

36 CHAPTER 3 = Dojo Widget Extension = Advanced topics

Bundle-Localization: plugin
= Move translatable strings into property files

When the Bundle-Localization path has been defined, Eclipse will use the file
[path]_[locale].properties for specific locale. For example, if the path is set to plug-
in, then Eclipse will use the file plugin.properties for default locale, use file
plugin_zh.properties to support a Chinese locale and use file plugin_es.properties
to support a Spanish locale. Infrastructure developers need to move translatable
strings into specific properties file to support the specific language.

= Use % strings for NLS support property or attribute

For example, the description attribute of event tag supports NLS. To define the
description attribute, Infrastructure developers need to use %|[description]. See the
example below:

<event name="onClick" description="%desc_event_onclick" />

Meanwhile, Infrastructure developers need to add description messages into
different properties files. For example, the plugin.properties file could contain:

desc_event_onclick = event triggered when the widget is clicked

Please access the Internationalize your Eclipse Plug-In on the Eclipse website to get
more information about how Eclipse plug-ins supports NLS.

BTT Context data binding

Like BTT original widgets, customized widgets can be easily bundled with BTT
Context data. Infrastructure developers need to do nothing in code. If a widget
needs to be bundled with a DataField type data, Infrastructure developers need to
define a dataName type property named dataName. If a widget needs to be
bundled with Collection type data, Infrastructure developers need to define a
dataNamelList type property named dataNameForList. BTT runtime will assign
value of specified Context field into this attribute.

XUI Generation Template

When the BTT XUI editor generates an XUI file into a JSP file, it uses a template
file. The template file should include common content of a JSP page, such as
charset, included css files and js files. By default, BTT provides two template files
which are in the WebContent/templates folder (the folder can be configured in
XUI Default Settings of XUI Web Project Properties Dialog) of a XUI Web project:

* template_debug.ftl: enables ECA debug console for debugging purpose.

* template_ftl: disables the ECA debug console for higher performance at
runtime. Infrastructure developers can implement project-specific template file,
and put it into the WebContent/templates folder. When the XUI editor
generates an XUI file into a JSP file, all template files in this folder will be
shown as candidate templates for user to choose. The template files should
follow the FreeMarker specification and standard FreeMarker directives can be
used in template files. Furthermore, the following variables are supported in
template files:

= content: represents all the content of a specific JSP file in text format.

= user: the user who generates this JSP file

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

http://www.eclipse.org/articles/Article-Internationalization/how2I18n.html

CHAPTER 3 = Dojo Widget Extension = Advanced topics 37

* date: the date when generates this JSP file.

= cssFiles: the list of cssFiles which should be included in this JSP file.
= xui_file: the name of the XUI file that generates this JSP file.

= js_file: the list of js files which should be included in JSP file

* encoding: the charset of this [SP page

Please refer to the page

http://freemarker.sourceforge.net/docs/dgui_quickstart template.html for more

information about the FreeMarker template schema.

XUI page generation from BTT context data

BTT tools provide the function to generate an XUI page skeleton from transaction
context data. With this feature, Functional developers do not need to create the
XUI page from scratch. This greatly improves the productivity of application
development. When a project-specific widget is created, Infrastructure developers
can register this new widget into the candidate widget list of the transaction editor
shown as below:

2% BTT Transaction Editor

Data = Detailed Information

Modify the detailed information.
Define data in the following section. 2

1d*% codigo_postal
field [sessionID] Description:
field [dse_errorMessages]
Value: Undefined

kColl [branchData]
kColl [sessionData]
kColl [zerviceResponseHeader]
field [codigo_postal] Corr

7
niEEEMmm

User Interface
Modify Detailed Information for UI Generation

User Interface Element

Type: text |
bGrouy
buﬁnnp Yalue |2
check codigo_postal
combo
Attributes: |desc yes
error yes

label
labelList
list v

The following steps describe how to register a widget for XUI page skeleton
generation:

Register new extension point

1 Right click com.ibm.btt.tools.transaction.editor.widgets then click
New > widget.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

http://freemarker.sourceforge.net/docs/dgui_quickstart_template.html

38 CHAPTER 3 = Dojo Widget Extension = Advanced topics

All Extensions 1az = Extension Details

Define extensions for this plug-in in the following section. Set the properties of the selected extensicn, Required fields
are denoted by ™",

T - jisH

|iom.ibm. bt tools. transaction.editor. widgets | A | | 544 | -

%] Label {widget) New ¥ (] hiddeniwidget t

%] Button {widget) |

%1 wi

i %] widget

] Combo (widget) Delete %_.
H s E" Show Description ttension point description
1¥| CheckBox {widge?)

4,;]] Open Schema

KJ Radio {widget) e : ttension point schema
|X| TextArea {widget) %’ Find Dedaration Earin; extension ;oint

%] RichText {widget] 7 Find References

2 In the Extension Element Detail dialog. type the applicable information.

* name: the name of the widget. This name should be the same as the one
registered in the extension of
com.ibm.btt.tools.xui.editor2.widgets described in ‘Import
widget’ on page 23.

* UlIValidatorClass: the implementation class that decides if the widget will
be shown in the candidate widget list when a specific data element is
selected. The class should implement the interface
com.ibm.btt.tools.transaction.validator.WidgetValidator.

*= XUlGeneratorClass: The implementation class that generates the widget
to XUI file. Infrastructure developers can either use BTT default XUI
widget generation class
com.ibm.btt.tools.transaction.generator.W idgetUIGenerator
or implement specific widget generation class by implementing the
interface
com.ibm.btt.tools.transaction.generator.WidgetGenerator.

Extension Element Details
Set the properties of "widget". Required fields are denoted by "+,

name*: Label

LIvalidato-Class: o, ibm, bk, kools. transaction. validator, BasicUIY alidator
#UIGeneraborClass: com.ibm, bk kools, bransaction. generator WidgetUIGenerator

Implement required classes

» UlIValidatorClass: The implementation class must implement the validate
method of the interface WidgetValidator. The following is the description of
this method:

g

* Returns true or false depending if the widget makes sense for the data passed as parameter or not.

* data the data to he validated
* true if the widget makes sense for data passed as parameter. False otherwise.
*

public bhoolean validate (Metalata data):

= XUlIGeneratorClass: Please refer to ‘Create widget mapping’ on page 25 for
more details about how to implement a widget specific generation class.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 3 = Dojo Wid

get Extension = Advanced topics 39

Change default behavior of XUI generation

BTT implements the default behavior of generating the XUI page skeleton from
transaction context data. For example, a Text widget will be used for field type data

and Table widget will be used for iColl type data.

It is also possible for

Infrastructure developers to override this default BTT behavior such as using a

customized widget for iColl type data.

There are two ways for Infrastructure developers to change the default behavior of

XUI generation:

* Simple way: Infrastructure developers could
default generation behavior without the effort

give some controls on BTT
of implementing a new XUI

generation class. They can change the default behavior by modifying the
configuration file of default BTT XUI generator. This way fits for changing or
creating the mapping between data type and widget.

= Full control way: Infrastructure developers can implement and register a new
XUI generator to have the full control on XUI generation. The following steps

described how to change default BTT behavio
skeleton.

Register an extension

r of generating the XUI page

1 Add a new XUIDefaultGenerator element to the extension
com.ibm.btt.tools.transaction.editor.XUIDefaultBehaviourGenerator.

All Extensions

Define extensions For this plug-in in the Following section,

':ype filker bext

[H-<x= com.ibm, btk kools.common. naming

E|=3== oom.ibm. bkt toals transaction, editor, UIDef aulkBehaviorGener ator

------ (¥UIDefaultGenerator)

[#-=— gom.ibm. bkt kaals, cammen. globalFunctions
= com.ibm, bkt bools, xui.edior2, generator
|

2 In the Extension Element Details dialog, type the applicable information.

* name: The name of the generator which should be unique.

= file: the configuration file for the generator.

* class: the implementation class of the generator. Infrastructure developers

can either use the default BTT class

com.ibm.btt.tools.transaction.xuigenerator.XUIGenerate ora

new class which implements the interface

com.ibm.btt.tools.transaction.xuigenerator.IXUIGenerate.

* priority: the priority of this extended generator. If the extension point is
registered by multiple plug-ins, the highest priority extension will be
invoked by BTT. BTT default generator is registered as low priority. So the

customized generator should be registered

Extension Element Details
Set the properties of "XUIDefaultGenerator”, Pequired fields are denoted by
name: KUIDefaulkGenerator

file: configfdefaultxUIGener ation, xml

class: com, bm. bt tools, bransaction, xuigenerator, XUIGenerake

priority: low

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

as medium or high priority.

Browse. ..

[]

40 CHAPTER 3 = Dojo Widget Extension = Advanced topics

Modify default configuration file

The default configuration file of XUI generation maintains the mapping
information between XUI widget and context data type. The following is the
content in BTT default configuration file. Infrastructure developers can create a
new file to create a new mapping entry or modify the existing mapping entries.

P LIDSE I

g dataElement="ri=ld" widgetHame="Text"

g dataElement
g dataElement="kColl" widgetName
g dataElement="data" widgetHame="T=

2ll" widgetName

The dataElement value must match with the one defined in btt.xml file
(data > classTable section). And the widgetName value must be the widget
name that defined in the extension of com.ibm.btt.tools.xui.editor2.

Implement new XUI generation class

BTT provides the capability for Infrastructure developers to implement and
register a new XUI generation class to have full control when generating an XUI
page skeleton from transaction context data. The class should implement the
interface com.ibm.btt.tools.transaction.xuigenerator.IXUIGenerate.
The following are the API descriptions of IXUIGenerate interface:

public void generateXUIFile(String folder, String fileName,
String XUITemplateName, List <MetaData> dataToBeGenerated,
String contextName)

The method performs XUI generation for data passed as a parameter named
dataToBeGenerated. This data is in the context hierarchy specified as
argument. In case of using a template (XUITemplatName parameter), the
generated content is located in the first form of the template. The generation is
performed in the file with the fi1eName and in the folder specified as
parameter folder.

public void generateXUIFile(String folder, String fileName,
String XUITemplateName, List <MetaData> dataToBeGenerated,
String contextName, Hashtable <String, String> defaultMapping)

The method performs XUI generation for data passed as a parameter named
dataToBeGenerated. This data is in the context hierarchy specified as
argument named contextName. For data included in defaultMapping, the
widget generated is the one specified in this hashtable. So this hashtable must
contain keys as the following values: IXUIGenerate.FIELD,
IXUIGenerate.KEYED_COLLECTION, IXUIGenerate.INDEXED_COLLECTION
and IXUIGenerate.DATA and corresponding values must a widget name.

In case of using a template (XUITemplatName parameter), the generated
content is located in the first form of the template. The generation is performed
in a file with the fileName and in the folder specified as parameter folder.

public IRootModel generateXUIFile(String XUITemplateName, List
<MetaData> dataToBeGenerated, String contextName)

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 3 = Dojo Widget Extension = Advanced topics 41

The method performs XUI generation for data passed as a parameter named
dataToBeGenerated. This data is in the context hierarchy specified as
argument named contextName. In case of using a template (XUITemplatName
parameter), the generation content is located in the first form of the template.
An TRootModel object is returned containing the generation result.

= public IRootModel generateXUIFile(String XUITemplateName, List
<MetaData> dataToBeGenerated, String contextName, Hashtable
<String, String> defaultMapping)

The method performs XUI generation for data passed as a parameter named
dataToBeGenerated. This data is in the context hierarchy specified as
argument named contextName. For data included in defaultMapping, the
widget generated is the one specified in the hashtable. This hashtable must
contain keys as the following values: IXUIGenerate.FIELD,
IXUIGenerate.KEYED_COLLECTION, IXUIGenerate.INDEXED_COLLECTION
and IXUIGenerate.DATA.

In case of using a template (XUITempTatName parameter), the generated
content is located in the first form of the template. An IRootModel object is
returned containing the generation result.

Extend Table Column Widget

BTT has provided several default definitions for table column widgets in the XUI
Editor. Besides, the widgets displayed in a table column, their properties and the

rules for JSP generation could also be extended through Eclipse extension points

and some XML definitions.

Define Extension for Table Column Widget

If Infrastructure developers need to customize table column widgets in his self-
defined plug-in project, the prerequisite is to add the plug-in
com.ibm.btt.tools.xui.editor2 asthe plug-in dependency.

1 Right click com.ibm.btt.tools.xui.editor2.widgets then click New > widget.

If Then

Infrastructure developers need to define Click widget
a common XUI widget which could also
be used as a table column widget.

Infrastructure developers need to define Click internalWidget
a widget that is only for use as a table
column widget.

4 == com.ibm.btt.tools.xui.editor2.widgets
ColumnLink (internalWidget)

2 Inthe Extension Element Details dialog, type the applicable information. for
name, label, icon and config.
For the attribute conifg, you should choose or specify a relative path of the
widget definition file. Later, Infrastructure developers will take steps to create
an XML file to describe this widget.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

42 CHAPTER 3 = Dojo Widget Extension = Advanced topics

name*:
label*:
icon*:

config*:

description:

ColumnlLink
ColumnlLink

icons/ColumnLink.gif Browse...

widgets/ColumnLink.xml Browse...

Configure Detailed Definition for Table Column Widget

In XUI Editor, Infrastructure developers could follow the same style to describe a
column widget just like the common widget definition. For facility in this extension
sample, we have copied the xml definition file of the link widget (Link.xml) in the
BTT product and made some modifications on it with below steps:

1 Rename the Link.xml to ColumnLink.xml.

Move to the folder widgets.

2
3 Delete the functions and events sections from the file
a4

Add a tag named columnWidget to indicate this widget will be used for table
column <columnWidget editable="false"/>

The details of available attributes for tag columnWidget are listed in below

table.

Attribute

Description

name

editable

addTypelnfo

The attribute to identify the column widget. It is optional and the
widget name registered in extended plug-in will be used if this
attribute is not defined.

The available values are ‘true’ and ‘false’ which indicate whether
the widget could be chosen as an editable one or not for a table.

Besides, it is optional and the widget could be chosen from both

the editable and read-only widget list in table properties view.

This attribute is optional and asks for a Boolean value. It will be
used if the widget needs to be bound with a BTT typed data. If it
is set to true, the generated jsp tag of the widget will contain the
attribute named ‘type’.

The sample code snippet of this column widget definition is listed below.

<?xml version="1.0" encoding="UTF-8"?>

‘widget xzmlns="http://btt.ibm.com/WidgetSchema"
xmlns:xsi="http://www.w3.orq/2001/XMLSchema-instance"
xsi:schemalocation="http://btt.ibm.com/WidgetSchema WidgetSchema.xsd ">

lumnWidget editable="false" />

5 Add or remove property tag in the properties block to indicate the properties
of the widget.

<property name="visibility" default="visible"

type="Visibility" showInColumn="true"/>

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 3 = Dojo Widget Extension = Advanced topics 43

The details of the available attributes for tag property are listed in below table.

Attribute Description

name The attribute is used to define the property name. It is required;
otherwise this property will be ignored during generation.

type The attribute is used to indicate which property editor will be
used for this property. The value of it should equals with one of
the registered property editor ID in existing BTT toolings. It is
required; otherwise the property editor will be disabled in
editor.

default The attribute is used to indicate the default value of this
property. The generated JSP tag will contain this default value
attribute if it is defined. It is an optional one.

showInColumn The attribute asks for a Boolean value which defines whether
this property is available when this widget is used for a table
column.

The sample code snippet of this column widget definition is listed below.

version="1.0" encoding="UTF-8"7>

et zmlns="http://btt.ibm.com/WidgetSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
x31: schemaLocatlon— "http://btt.ibm. com/WldgetSchema WidgetSchema.xsd ">

< et name="ColumnLink" editable="false"

; name="id" type="String" showInColumn="true"/>

/7 name="text" type="NLS" showInColumn="true"/>
/ name="target" default=" parent" type="Target" showInColumn="true"/>
/ name="styleClass" type="String" showInColumn="true"/>

Configure Mapping Rules for Table Column Widget

There are more details about this topic in ‘Customized Property Mapping Rule’ on
page 33.

If there is some special logic put in during the JSP generation, such as extra
conversion for the names and values of JSP tag attributes, you need to define a
mapping rule for the column widget.

1 version="1.0" encoding= "UTE-8"7?>

prefix="btitdojo: ">

q i«rldgetName—"Co?uanlnk " tagName="a"™»

: ng propName="text" rule="remoteNLSPathRule" />
ng propName="styleClass" attrName="class" />

Taking the above snippet as an example, the tagged block widget-mapping
matches with the generation rules for the sample column widget ColumnLink. The
attributes for the tag widget-mapping are listed in below table.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

44 CHAPTER 3 = Dojo Widget Extension = Advanced topics

Attribute Description

widgetName The attribute is used to link the generation rules with the registered
column widget. It is required otherwise the rules could not be
assigned correctly. So its value should equals with the column
widget identifier.

tagName The attribute is required and used to indicate the JSP tag name for
the column widget generation.

In the above sample snippet, the tag property-mapping matches with the detailed
mapping policy for each widget property during generation. The attributes for tag
property-mapping are listed in below table.

Attribute Description

propName The attribute is used to indicate the identifier of the property which
needs extra generation logic.

attrName The attribute is used to indicate that the property name will be
replaced with the value of attrName during JSP generation. It is
used for conversion of JSP attribute name.

rule The attribute is used to indicate the identifier of a registered mapping
rule. It is used for conversion of JSP attribute value.

Define Extension for Mapping Rule of Table Column Widget

There are more details about this topic in ‘Customized Property Mapping Rule’ on
page 33.

Finally, if Infrastructure developers decides to use the extra rule to control the
value generation of JSP attributes, they also need register the rule into BTT tooling
extension to indicate the path of the configuration file which contains the mapping
rules. To do that, they could define an extension for the extension point
com.ibm.btt.tools.xui.editor2.generator. Then as in the graphic below,
add a child option of type rule.

All Extensions

Define extensions for this plug-in in the following secticn.

=I-= zom.ibm.btt, tools, xui.editor 2. generator
E Widget Generate Mapping {mapping)

As the graphic below shows, the required attributes name and class should be
configured. Especially for the attribute c1ass, Infrastructure developers need to
indicate the full path to a class which implements the interface
com.ibm.btt.tools.xui.editor2.generator.IRule. During the JSP
generation, the class would be instantiated and executed for the configured
mapping rules.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 3 = Dojo Widget Extension = Advanced topics 45

Extension Element Details
Set the properties of “rule”, Required fields are denoted by ™,

mame®: | customerRule

dass™: | rule.CustomerRule Browse. ..

Infrastructure developers need to add code for the attribute value conversion as the
graphic shows.

GCverride
public wvoid process (Map<S3tring, String> attributes, String property,
PropInfo info, IRootModel root, ICommonModel widgetModel) {

Svstem.out.println("execute in customer rule............ "y
String value = widgetModel.getPropertiesValues|().get (property):;
if (info!=nmll) {

if(info.zttrHame'!'=nnll)

property=info.attrMName;

}
if (value'!=nmll) {

value="(:"+value+":)";

attributes.put (property, wvalue);

How to add version control on runtime NLS files

BTT provides the basic infrastructure to support project-specific version control of
runtime NLS files. In this chapter, Infrastructure developers will be guided to
implement their version control logic which governs runtime NLS files by
timestamp.

Customize tooling behavior of NLS file generation

For the tooling side, BTT provides the default framework for runtime NLS control.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

46 CHAPTER 3 = Dojo Widget Extension = Advanced topics

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 4

Data Type Extension

BTT typed data elements represent business objects such as Date, ProductNumber
and Money. Compared with non-typed data element, a typed data element
identifies how BTT displays the business object and what validation must occurs
when BTT changes a data value. BTT types can be a simple type or a compound
type. A simple type only has a single property while a compound type has multiple
properties. By default, BTT provides four basic types, such as String, Number, Date
and Currency. BTT also provides the capability for Infrastructure developers to
implement project-specific data types.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

47

48 CHAPTER 4 = Data Type Extension = Implement data type extension

Implement data type extension

Declare new data type

To create a project-specific data type, firstly Infrastructure developers need to
declare this new type in type.xml file. The declaration includes:

= Typeid
It is the name of the type and should be unique.

* Implementation class
It defines the implementation class of the type. For simple type which has only
one property, the implementation class is com. ibm.btt.base.DataField. For
compound type which has multiple properties, the implementation class is
com.ibm.dse.base.KeyedCollection or
com.ibm.btt.base.IndexedCollection.

= Property Descriptor
Property descriptor specifies the default business rules and behaviors for this
data type. A type can have one or more property descriptors. For a simple type,
it has only one property descriptor. For a compound type, it has multiple
property descriptors. A property descriptor can have only one validator which
is used to check the data instance, and one or multiple converters which are
used to transform the data instance into a specific format.

The below figure shows the relationship of type, property descriptor, converter and
validator.

Type

A 4

PropertyDescriptor

A A v

Converter Validator

In most cases, Infrastructure developers do not need to implement their own
property descriptor class. BTT provides SimplePropertyDescriptor for simple
types and provides KCol1PropertyDescriptor and ICol11PropertyDescriptor
for compound types and provides StringDescriptor, IntegerDescriptor,
FloatDescriptor, and DateDescriptor for the basic types. Infrastructure
developers can also implement their own property descriptor for some special cases
by extending AbstractPropertyDescriptor which is the parent for all property
descriptors. The graphic below shows hierarchy of property descriptor classes.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 4 = Data Type Extension = Implement data type extension 49

Compound Type Property
Descriptor

Compound Type Property
Descriptor

Basic Type Property
Descriptor

Below is an example of a type definition:
<type id="Currency" implClass="com.ibm.btt.base.DataField">

<Descriptor id="typeDefault"
implClass="com.ibm.btt.base.types.impl.SimplePropertyDescripto
P

<Converter convTypes="default"
implClass="com.ibm.btt.base.types.impl.CurrencyConverter">

</Converter>
</Descriptor>

</type>

Implement type validator

A validator ensures that the typed data element conforms to the business rules of its
binding type. The property descriptor definition of the type specifies the validator.
If the property descriptor does not specify a validator, all values for the data
element are valid.

A validator can have validation parameters. For example, a validator for a date
type checks whether the value to be validated lies within limits defined by
parameters such as lowerLimit and upperLimit.

Infrastructure developers do not need to implement the validator from scratch.
BTT provides com.ibm.btt.base.types.impl.BaseValidator as super class of
all validator implementations. Infrastructure developers can extend the class and
override validate method.

Below is sample code of validate method implementation:

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

50 CHAPTER 4 = Data Type Extension = Implement data type extension

public void validate(TimeZone convertedValue, TimeZoneValidationParamBean params)
throws DSETypeException {

// TODO Auto-generated method stub

if(convertedValue != null && params.maxoffset != null &&
!params.maxoffset.equals("")){

if (TimeZone.getTimeZone(params.maxoffset).getRawOffset() >
convertedValue.getRawOffset()){

String msg = "validation failed in " +
this.getClass().getName() +
“.The offset of TimeZone '" +
convertedValue.getID() +
"' should be smaller than '" +
params.maxoffset + "'";

throw new DSETypeException(DSETypeException.harmless, "", msg);

if(convertedValue != null && params.minoffset != null &&
!params.minoffset.equals("")){

if (TimeZone.getTimeZone(params.minoffset).getRawOffset() <
convertedValue.getRawOffset()){

String msg = "validation failed in " +
this.getClass().getName() +
". The offset of TimeZone '" +
convertedValue.getID() +
"' should be larger than '" +
params.maxoffset + "'";

throw new DSETypeException(DSETypeException.harmless, "", msg);

Implement type converter

Converters transform business objects to Strings (formatting) and Strings to
business objects (unformatting).

A converter can have conversion parameters when convert the type to or from
String. For example, a converter for Date type can have pattern parameter, which
defines the format of a date String in ‘YYYY-MM-DD’ or MM-DD-YYYY’ or
other formats.

Infrastructure developers need not to implement converter from scratch. BTT
provides com.ibm.btt.base.types.impl.BaseConverter as super class of all
converter implementations. Infrastructure developers can extend the class and
override format and unformat methods.

public abstract String format(K value, T params, String convType, Locale locale)
throws DSETypeException;

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 4 = Data Type Extension = Implement data type extension 5 1

public abstract K unformat(String value, T params, String convType,
Locale locale) throws DSETypeException;

Below is simple code of implementing the two methods:

public String format(TimeZone value,
com.ibm.btt.base.types.impl.BaseConverter.FormatParamBeam params, String
convType, Locale locale) throws DSETypeException {

// TODO Auto-generated method stub
//in the formate of: GMT Sign TwoDigitHours : Minutes
return value.getID();

@Override

public TimeZone unformat(String value,
com.ibm.btt.base.types.impl.BaseConverter.FormatParamBeam params, String
convType, Locale locale) throws DSETypeException {

// TODO Auto-generated method stub
//in the formate of: GMT Sign TwoDigitHours : Minutes
return TimeZone.getTimeZone(value);

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

52 CHAPTER 4 = Data Type Extension = Implement type presentation widget

Implement type presentation widget

A simple type can be integrated with the BTT XUI Editor. That means, when a
field in specific type is selected as dataName of TextBox widget, XUI Editor will
generate specific widget for this type automatically. For example, if a Date type
field is chosen, a DateTextBox will be generated as presentation widget
automatically. Infrastructure developers need to implement a presentation widget
for a simple type. Infrastructure developers need three steps to register and
implement presentation widget for a new simple data type.

= Extending BTT JSP tag handler for TextBox widget
= Modifying bttdojo.tld

= JavaScript implementation.

Extend BTT JSP tag handler for TextBox widget

To extend the BTT JSP tag handler for a TextBox widget, Infrastructure developers
need to extend com.ibm.btt.dojo.tag.DojoTextBoxTag class and override
getWidgetType method. The DOJO widget class for the new type can be returned
if dataName of TextBox in this type.

Below is the implementation code:

protected String getWidgetType(String type) {

if ("TimeZone".equalsIgnoreCase(type)) {
return "com.ibm.btt.dijit.TimeZoneTextBox";

else{
return super.getWidgetType(type);
}
}

Modify bttdojo.tid

After extending the JSP tag handler for the TextBox widget, Infrastructure
developers need to modify bttdojo.tld file to use the new tag handler for the
TextBox widget. Infrastructure developers can search tag with name textbox and
change the tag-class to be the class implemented previously

JavaScript implementation

To implement JavaScript for the new data type as a presentation widget,
Infrastructure developers need to extend the BTT base class
com.ibm.btt.dijit.ValidationTextBox and override validator method.

Bean Property Converter

For web applications, most data transferred through http is in text format, such as
user information, session ID, and even some complex data types are always kept in
text format. The bean property converter provides typed data element to handle
the conversion between plain text and Java object.

Infrastructure developers can use the steps that follow to implement the bean
property converter:

1 Implement bean property converter class.

2 Register bean property converter.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 4 = Data Type Extension = Data type extension sample 53

Data type extension sample

A data type extension sample is provided to demonstrate how to implement data
type extension in the BTT framework. In the sample, we will implement a simple
TimeZone data type to demonstrate all the tasks necessary to extend a data type
described previously.

TimeZone is a common data type in business. In this sample, we require a
TimeZone type in the format of ‘GMT+(-)DD’ where DD is two digits with scope
from 0 to 12. The TimeZone type can have two validation parameters: minoffset
and maxoffset, which can limit the valid scope of TimeZone data for a specific
purpose. The procedure that follows describes the primary steps of implementing
this data type.

1 Define the data type.

a Add the lines below into types.xml.

<type id="TimeZone" implClass="com.ibm.btt.base.DataField">
<Descriptor id="typeDefault"
implClass="com.ibm.btt.base.types.impl.SimplePropertyDescriptor">

<Converter convTypes="default"
impl1Class="com.ibm.btt.alphatest.types.impl.TimeZoneConverter">
</Converter>

<Validator
implClass="com.ibm.btt.alphatest.types.impl.TimeZonelValidator"/>
</Descriptor>
</type>

2 Implement the TimeZone validator.

a Create new class
com.ibm.btt.alphatest.types.impl.TimeZoneValidator that
extends com.ibm.btt.base.types.impl.BaseValidator

b Override the validate method.

c Create the class TimeZoneValidationParamBean in
TimeZoneValidator, which extends from
BaseValidator.ValidationParamBean.

d Add the validation parameter maxoffset as a public variable.

e Add the validation parameter minoffset as a public variable.

public static class TimeZoneValidationParamBean extends
BaseValidator.ValidationParamBean{

//in format: GMT Sign TwoDigitHours : Minutes

public String maxoffset;
public String minoffset;
}

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

54 CHAPTER 4 = Data Type Extension = Data type extension sample

3 Create the TimeZoneConverter for the TimeZone.

a Create a new class
com.ibm.btt.alphatest.types.impl.TimeZoneConverter that
extends com.ibm.btt.base.types.impl.BaseConverter.

b Override the format method.
c Override the unformat method.
4 Create the presentation widget.
a Create a new dojo widget for TimeZone with the name TimeZoneTextBox.

b Create a validate method validator: function(/*anything*/value,
/*dijit.form.ValidationTextBox.____
Constraints*/constraints)

Note This validates that the input text is in the expected format of
TimeZone.

c Create a new class
com.ibm.btt.alphatest.dojo.tag.AlphaTextBoxTag that extends
class DojoTextBoxTag.

Note After implementing dojo widget for TimeZone type, we need to
ensure the TimeZoneTextBox can be generated as an input text box
for TimeZone type data when BTT generates HTML from JSP. By
default, BTT runtime generates JSP file to HTML file, it uses
com.ibm.btt.dojo.tag.DojoTextBoxTag to generate tag for
input data. DojoTextBoxTag can only handle original BTT data
types such as String, Number, Currency, etc. It can not generate tags
for new data types.

d Override the getWidgetType method to generate new widget tag for
TimeZone data type.

protected String getWidgetType(String type) {

if ("TimeZone".equalsIgnoreCase(type)) {
return "com.ibm.btt.dijit.TimeZoneTextBox";

else{
return super.getWidgetType(type);

}
}

5 Update bttdojo.tld to replace DojoTextBoxTag by AlphaTextBoxTag.
a Open bttdojo.tld and identify the DojoTextBoxTag class.

<tag>
<name>textbox</name>
<tag-class>com.ibm.btt.dojo.tag.DojoTextBoxTag</tag-class>

b Change the DojoTextBoxTag to the AlphaTextBoxTag class.

<tag>
<name>textbox</name>
<tag-class>com.ibm.btt.alphatest.dojo.tag.AlphaTextBoxTag</tag-class>

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 4 = Data Type Extension = Data type extension sample 55

6 Export and copy the data type extension files.

Run the new Eclipse Application described in ‘Runtime Project Setup’ on

page 16.

Export the AlphaWidget project as a plug-in and copy it to the RAD plug-

in folder.

Export the classes below to a jar file named alphatype jar.

com.ibm
com.ibm
com.ibm

.btt.alphatest.types.impl.TimeZoneConverter
.btt.alphatest.types.impl.TimeZoneValidator
.btt.alphatest.dojo.tag.AlphaTextBoxTag

Copy types.xml and bttdojo.xml from the AlphaWidget project to the
location of the BTTExtensionWeb project.

Copy alphatype.jar to WebContent\WEB-INI\lib folder of
BTTExtensionWeb project.

7 Create the test.

Create a

new operation definition file named datatypeExtensionOp.xml.

Create an operation named datatypeExtensionOp with an the

implcla
com.ibm

Create a

ss attribute of
.btt.sample.operation.DataTypeExtensionOperation.

context with an id attribute of dataTypeExtensionCtx and a

type attribute of oper.

Create that applicable reference elements for the context. See example

below.
<datatypeExtensionOp.xml>
<l-- This operation gets from the context a field containing the page
wanted to be shown to the user and places it in the right place to
make Composer understand that this page must be shown. -->
<!-- Operation definition -->
<operation context="dataTypeExtensionCtx" id="datatypeExtensionOp"
impl1Class="com.ibm.btt.sample.operation.DataTypeExtensionOperation">
</operation>
<context id="dataTypeExtensionCtx" type="oper">
<refKColl refld="dataTypeExtensionData" />
</context>
<kColl id="dataTypeExtensionData">
<refData id="preferTimeZone" />

<fiel
<kCol
<
<
<
<
<
<
<
<
<
</kCo
</kCol11>

<data id=

<para
<para
<para

</data>

d id="timezone" refType="TimeZone"/>
1 id="timeZonelist">

field id="GMT+I1" value="GMT+1"/>
field 1d="GMT+2" value="GMT+2"/>
field 1d="GMT+3" value="GMT+3"/>
field id="GMT+4" value="GMT+4"/>
field 1d="GMT+5" value="GMT+5"/>
field 1d="GMT+6" value="GMT+6"/>
field 1d="GMT+7" value="GMT+7"/>
field 1d="GMT+8" value="GMT+8"/>
field id="GMT+9" value="GMT+9"/>
11>

"preferTimeZone" refType="TimeZone">
m value="true" id="isMandatory"/>

m value="GMT+8" id="maxoffset"/>

m value="GMT+6" id="minoffset"/>

</datatypeExtensionOp.xml>

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

56 CHAPTER 4 = Data Type Extension = Data type extension sample

8 Create a class
com.ibm.btt.sample.operation.DataTypeExtensionOperation. that
extends the class BT TServerOperation and override the execute method with
the code below.

System.out.printin("DataTypeExtensionOperation");
setValueAt(Htm1Constants.REPLYPAGE, "datatypeExtension.jsp");

Note As this is a very simple sample, the class just extends
BTTServerOperation and overrides the execute method and no
business logic is implemented.

9 Create Test XUI file.
a Expand the Alpha_Testv7.1 project.
b Right click the xui folder.
Click New > Other > New XUI File.

0

Q

In File name field, type datatypeExtension.xui.
e Click Finish.
Create XUI File =[x

Create XUI File

Create a new XUL file resource

Enter or select the parent folder:
AlphaTest_wT. 1/xui

2 AlphaSanpleTest
+ 32 AlphaSanpleTestEAR
= :73 MphaTest_+7.1
[. apt_generated
[= . externalToolBuilders
[. =settings
- sre
+- = Weblontent
= xui
3 AphaTest_v7. 1EAR
) §E TestiUI
+- 32 TestIUIEAR

File name: datatypeExtension| xui

DCreate a xui file uszing templates

Advanced >
@ £ Back [Einish][Cencal

10 Open datatypeExentsion.xui with XUI editor.
11 Click the grey area and open the Properties tab.
12 Click Select Context.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 4 = Data Type Extension = Data type extension sample 57

[£ #7328 | £ Properties 52 . 4 Servers|JiData Source Explorer| [fd Snippets| g Ammotations| Bl Console| 47 Search| O] Progress = ¥ =08

I0I Editor

Properties (onpaxt: Selact Contaxt | [Clear |
55 Files

=)

13 In popup dialog, select datatypeExtensionOp.xml >
dataTypeExtensionCtx you created earlier.

14 Click OK.

Please select a context @.
¥| contaxt.aml |E| preferTimeZone
=l operations L timezone
¥ datatypeExtensionlp. xm] + _K_ timeZonelist

¥ displayPagelp. xml
¥| stortUpHimlSessionDp. mn
¥ toggleButtonlp. xml

[procassors

0K] [Cancel

15 Create the Ul

a In the XUI editor, compose the page as shown below.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

58 CHAPTER 4 = Data Type Extension = Data type extension sample

#lphaTextBoxTag. java X bttdojo. t1d [&] TimeZoneTextBox. js ¥ #datatypeExtension. x 23 33 = 8| 5= outline 52 =
O
7 Palette [= FPanel

= Form (FormO1]

= Group (Group0l)
E:l Mar quee Label (Label01)
09 Text (Textdl)
Label (Label0Z)

|® Togglebutton Combo (ComboO1]
[=-Containers 40 it FlaceHolder

TimeZone in Text [C Fanel

TimeZone in Combo » [Form
G—roup
= Controls 40
[FE] Label
01 Text

[Button

Combo
& Radio

h Select

= AlphaSampl. .. <0

[+] CheckBox
SelectList
[s:H Ri chText
e

[IH Texthrea
o=z}

=T

b Click Text Widget.
c Open the Properties tab
d Edit the dataName property.

e Click datatypeExtension > dataTypeExtensionCtx >
preferTimeZone.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 4 = Data Type Extension = Data type extension sample 59

Please select a data name @
¥| context.aml __>dataTypeExtensionCtx \E| preferTimeZone
= ope; |E| timezone
X = K| timeZoneList
¥ displayPagelp. xml \E| GMT+1
¥ startUpHtmlSes=ionlp. xn \E| GMT+Z
¥ toggleButtonlp. xml \E| GMT+3
= processors \E| GMT+4
\E| GMT+5
\E| GMT+E
\E| GMT+T
\E| GMT+5
\E| GMT+3

f Click Combo widget.
Open the Properties tab.

h Click datatypeExtension > dataTypeExtensionCtx > timezone field
for the dataName property.

i Click datatypeExtension > dataTypeExtensionCtx > timezoneList for
the dataNameForList property.

j Click Save.

16 Right click datatypeExentsion.xui file then click Generate dojo to generate
JSP.

17 Open index.xui file with XUI editor.
18 Add a Link widget,

Alpha Samples

19 Open the Properties > Action tab.

20 Click Launch Operation for Action Type.

21 Click datatypeExtensionOp for operationld.

22 Click Save.

23 Right click index.xui file and click Generate dojo to generate JSP.

24 Copy TimeZoneTextBox.js from AlphaWidget project to
BTTExtensionWeb project.

25 Deploy the test application to WAS and run.
26 Open the datatypeExtension.jsp page (see below).

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

60 CHAPTER 4 = Data Type Extension = Data type extension sample

null
TineZone in Textl [CMT+ a Please input time zone in format: GHT+(-)DD
TineZone in Combo GUT+E -
27 Do a check to make sure that the user input is correctly validated.
Note The text box validates the user input String in the format ‘GMT+(-)DD’.
Furthermore, even user input right TimeZone format, it will also check
if the value is in the right range (from GMT+6 to GMT+8).
null

TimeZone in Textl |GMT+O5| L| The inpat value is less than the defined minoffset *GNT+6°

TimeZone in Combo GUT+E -

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 5

Web Services Extension

For Web services invocation, BTT provides both tool and runtime support for

technical Functional developers to use. The following diagram shows the high-level
structure of BTT Web services component which could be separated into tool and
runtime parts. There are also extension capabilities on each part for Infrastructure
developers to customize project specific behavior during Web services integration.

BTT Runtime Client

IDE
BTT Tooling BTT WS Operation BTT WS Connector
Context
WSDL Parser JAX-RPC
[\ n Connector
L) ‘ ¢] Ref-Services |
14 ay
Data Mapping T | JAX-WS
Mapper Format Connector
i

/
k|

Buiddepy ejeq

\

. wsDL2Java |,)
Provided by WAS |}/ —

Java
Interface

Java Bean

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

62 CHAPTER 5 = Web Services Extension = Web services Tool Extension

Web services Tool Extension

The BTT Web services tool provides the one-stop facility to enable the Web
services integration for a customer project. It consumes WSDL/XSD files as input,
and then generates the three artifacts required for Web services invocation in BTT
project:

= Web services connector
= Web services self-defined operation
= Web services client stub classes.

Referring to the usage guide of Web services tool, please find the related content
from the Multichannel Bank Transformation Toolkit Functional Developer User Guide.

ID Mapping during self-defined operation generation

For Web services integration in a BTT project, technical Functional developers
needs to produce a self-defined operation to invoke the related server operations.
As a self-defined operation artifact, the associated data definition is derived from
the input/output messages of the chosen Web services operations automatically.

All the data in the generated self-defined operation has local accessibility and
follows the default naming convention. But sometimes for the purpose of high re-
usage rate of global data definition in a BTT application, the automatic data
generation logic could be in intervened by project extension. Infrastructure
developers could extend the pre-defined extension point to indicate the data link
reference between self-defined operation and global data dictionary.

Prepare tool extension environment

For tool extension, Infrastructure developers need to prepare the working
environment by the following steps. For more details, please refer to the ‘Plug-in
Project Setup’ on page 14.

1 Create an Eclipse Plug-in project
2 Add the required plug-ins as project dependency

= com.ibm.btt.extension.ws.namemapping
- =k JRE System Library [JavaSE-1.6]
- 2 Plug-in Dependencies
2 src
» = icons
- = META-INF
& build.properties
& plugin.xml

Add extension definition for target extension point

In this step, Infrastructure developers needs to provide specific extension definition
to the extension point pre-defined in BTT project:

1 Open the file plugin.xml of the working project
2 Click the Extension tab.
3 Click Add.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 5 = Web Services Extension = Web services Tool Extension 63

4 Browse to the extension
com.ibm.btt.tools.transaction.editor.wsNameMapping.

<= New Extension . E@ﬂ

Extension Point Selection

Create a new Web services Name Mapping extension.

| Extension Points | Extension Wizards |

Extension Point filter: com.ibm.btt.tools.transaction.editor.wsNameMapping

i =iicom.ibm.btt.tools.transaction.editor.wsNameMapping | ‘

5 Click Finish.

Configure extension details

In the details configuration panel of newly added extension definition,
Infrastructure developers need to provide a implementation class of the interface
com.ibm.btt.tools.transaction.ws.generator.mapping.name.INameMapp
er. The behavior of this class is to provide a Java map data to describe the relation
between names of self-defined operation and global data dictionary.

Extension Element Details

Set the properties of "nameMapper". Required fields are denoted by "*".

com.ibm.btt.extension.ws.namemapping.mapper.controller.NameMapper |Browse...

Implement name mapper interface

During the self-defined operation generation, the names defined in WSDL will be
changed into valid Java names which will be used for the self-defined operation
data by default. In the name mapper interface, there is an input parameter with the
type of String set that contains all the changed Java names of selected operations.
And then, it should give back a map data in which the keys are the Java names and
the values are the mapped data names of global data dictionary. There is another
parameter with the type of List that contains all the global data in the application.

public interface INameMapper {
Map<String, String>
map (Set<String> javaNames, List<DataElement> globalData);
}

The implementation class of the mapper interface should be configured in the
extension. The Web services tool will then prepare the required parameters and
launch it. After execution of the extension class, the returned map data will be used
during the self-defined operation data generation.

Samples overview

In the sample, the extension plug-in will pop-up a dialog for the end user to
manipulate the data mapping relationship between self-defined operation and
global data dictionary. As the screen shot below shows, the left column lists the
names from self-defined operation. The right column provides combo editors for
each cell from which the global data could be selected.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

64 CHAPTER 5 = Web Services Extension = Web services Tool Extension

- ~ l _

ID from WSDL 1D from Global Data
return

[

Derive Self-defined Operations

Generate Self-defined Operations from WSDL based on

com.ibm.btt.base.ws. WSAccessOp

bean23
bean12
Operations List beanl3
|E String echoOperation(Beanl inputl,Bean2 input] bean301
bean302
inputl ad
input2 input22 L.
input3 input11 L
return =
beansq beanDatal
beanData2 i
Data will be generated with BTT type
Data will refer to global dictionary
Loading Name Mapping Registry from Project Extension OK | ‘ Cancel

LY

For the details of the sample, please refer to the extension project
MappingName.zip.

The screen below shows the related classes of the extension.

4 # com.ibm.btt.extension.ws.namemapping.mapper.controller
> [NameMapperExt.java
4 # com.ibm.btt.extension.ws.namemapping.mapper.model
+ 11 NameMzappingModel.java
4 # com.ibm.btt.extension.ws.namemapping.mapper.ui
> [MapperDialog.java
+ [J] NameMappingCelumnLabelProvider.java
+ 11 NameMappingContentProvider java
» 11 NameMappingEditingSupport.java
+ 11 NameMappingLabelProvider.java

= NameMapperExt. This is the implementation class of the interface registered for
the extension point. It performs the model creation and launches the dialog for
data manipulation.

final Display display = Display.getdefault():
display.syncExec (new Runnable() {
@override
public wvoid run() |
Shell shell = new Shell (display.getBRctiveShell()):

Dialog dialog = new MapperDialog(shell, model);
dialog.cpen();

1)

= NameMappingModel. This is the data model of the extension application, which
contains the global data and the names from Web services operation. The
manipulation result is also stored in this model class.

= MapperDialog. This is the main UI part of the extension application which
contains a table to show names and accept manipulations. This dialog box is a
popup during the extension execution.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 5 = Web Services Extension = Web services Tool Extension 65

= NameMappingContentProvider and NameMappingLabelProvider. These
two classes are used for the table shown in dialog box to interact with the data
model. The main purpose for them is to show the data model in the table.

tableViewer.setContentProvider (new NameMappingContentProvider());
tableViewer.setLabelProvider (new NameMappingLabelProvider());

tableViewer.setTnput (model . getNameMappings ()) ;

valueColumnViewer. setEditingsupport (new NameMappingEditingSupport (tableViewer, model.getGlobalData()));
valueColumnViewer. setLabel Provider (new NameMappingColumnLabelProvider ());

= NameMappingColumnlLabelProvider and NameMappingEditingSupport.
These two classes are used for the right column to provide the combo cell
editor and related editing support.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

66 CHAPTER 5 = Web Services Extension = Web services Runtime Extension

Web services Runtime Extension

BTT Web services runtime follows the principles of the BTT programming model,
which makes use of BTT core concepts (operation, format, service) to resolve the
Web services invocation. The learning curve is, therefore, shorter for Infrastructure
developers.

Web services Runtime Overview

At runtime part, BTT invokes Web services by means of the work of these three
primary runtime components. For project-specific purpose, Infrastructure
developers could extend their own runtime components used for Web services
runtime.

Web services Connector

Web services connector communicates with the Web services provider. It covers
the implementation details such as creating a service delegate object, reflecting the
requested operation, configuring the invocation properties. In the BTT product,
there are two different sets of code to support the JAX-RPC and the JAX-WS
specifications. The latter is recommended by default because it is compatible with
the former one.

The Web services connector has implemented a BTT service interface. Developers
could use it like a standard BTT service object. The Web services connector
instance could be configured by XML and instantiated for use standalone by code
like readObject(String serviceName). The Web services connector could be
created and edited by the BTT Transaction Editor.

Web services Access Operation

In a BTT application, developers should use Web services Access Operation to
invoke a Web services. Web services Access Operation extends the standard BTT
Operation. In its execution logic, it communicates to Web services with the help of
Web services connector and then processes the input and output message data by
Web services mapper.

Web services Mapper

The data transferred between Java Web services and client is quite different from
the BTT Context and Data. To bridge the gap between the two different data
systems, Web services mapper is used closely with Web services Access Operation
to change between BTT XML based data and Web services Java Beans.

Extend WS Handler and WS Connector

Developers could use handlers to inject additional logic into the message flow
during Web services invocation, for a variety of purposes such as capturing and
logging information and adding security or other information to a message.

The handlers registered to application level are supported by both JAX-RPC and
JAX-WS. But for JAX-WS, handlers could also be plugged into runtime by
annotation or code. The handlers registered into runtime will be used by a handler
resolver that is provided by BTT Web services runtime.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 5 = Web Services Extension = Web services Runtime Extension 67

The extension for WS handlers is always implemented together with WS connector
extension. So this chapter uses a sample to cover the extension guide for both of
these two components.

Samples Overview

In the sample, there is guide about how to print the SOAP messages transferred
during the invocation. Actually, Infrastructure developers could follow similar steps
to manipulate the inbound and outbound messages, such as adding SOAP header
or encrypting messages.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

68 CHAPTER 5 = Web Services Extension = Web services Runtime Extension

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

69

CHAPTER 6

Channel Policy
Management and
Extension

Channel policy management provides bank customers with unified business data
integration across different channels, along with a unified user experience cross
channel. With channel policy management, developers can rapidly develop multi-
channel business integration solution, and rapidly change and deploy business rules
in production. Furthermore, the channel policy implementation is loosely coupled
with specific transaction logic.

BTT provides the embedded channel policy management mechanism in the BTT
Channel layer. The channel policy can be used to handle in two levels:

* Channel level: In this level, all requests can be validated by channel policy.
For example, to check if a user has the privilege to use Internet banking
channel or if the user can use a specific operation in the Internet banking
channel.

= Operation level: In this level, when a specific transaction or operation is
invoked by a user, channel policy can be used to check the authorization limits
to this user. For example, when a user is using the Internet banking channel to
transfer money in account, the channel policy can be used to check the
maximum amount money the user can transfer on the Internet banking
channel.

There are two primary components in BTT channel policy management
framework:

* Channel Policy Handler: is used to extract policy input parameters from the
channel context and parse the policy check result from the rule provider
service. As parameters and policy result are project specific, there is no default
implementation. Infrastructure developers need to implement their own
handler for a specific project.

* Rule Provider Service: provides a common interface to access the rule
engine. Two pre-built rule providers are implemented as BTT services: ILog
Connector Service and Java Code Rule Provider Service. Infrastructure
developers can extend rule provider service to support any other third part rule
engine.

The figure below shows the logic view of the BTT channel policy component.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

70 CHAPTER 6 = Channel Policy Management and Extension =

BTT Channel Policy
Management

Request

Reject Channel Policy Handler I

L e |

BTT Channel Driver

Rule Provider Service

pass
Operation/OpStep
, - -— -
I‘- R -
L Third Part Rule I
! Engine I
g !

L

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 6 = Channel Policy Management and Extension = Channel level policy management 7 1

Channel level policy management

Implement channel policy handler

BTT provides an abstract channel policy handler
com.ibm.btt.channel.AbstractChannelPolicy to handle policy in the
channel level. The doCheck method in AbstractChannelPolicy provides a
default implementation to use with the defined rule service to do channel level
policy management. Infrastructure developers can override the method as
necessary.

Infrastructure developers should override the following two methods in their
handler implementation:

protected Map<String, Object> getInputParameter(ChannelContext ctx)

The method is used to construct the input parameters for the doCheck method
using the data from channel context.

protected PolicyResult processResult(Map<String, Object> result)

The method is used to parse the result returned from the rule provider service.

The com.ibm.btt.channel.PolicyResult is the return type of processResult
method. It includes the execution result of policy check. If the check passes, the
BTT channel provider will continue the request processing. Otherwise, the BTT
channel driver will throw the
com.ibm.btt.channel.ChannelPolicyException. The messages in
PolicyResult are used to keep the messages generated during rule check.

The following is sample policy handler implementation:

public class UserSecurityChannelPolicyHandler extends lbstractChannelPolicy

Foverride
protected Map<S3tring, Chject:> getInputParameter (ChannelContext channelCtx)
Map input = new HashMap():
String operationMNawe=null;
S3tring userID="user01™;
try {
operationName= (3tring] channelCtx.getRequesthatal) . .getValueldt ("data.dse_operationMam=") ;

} catch (Exception e) {

i

ChannelPulicyInpulDole dalbo-—new ChoannelPulicyInpulDabo()
data.setOperationllame ([operationlame)
data.setUserID (userID) ;
PolicyResult result=new PolicyResulti():
input.put ("result”, result):;
input.put ("channe _Data™, data):;
return input
i

Foverride
protected PolicyResult processResult (Map<String, Object> argd) |

return (PolicyResult] argl.get ("result™);

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

72 CHAPTER 6 = Channel Policy Management and Extension = Channel level policy management

Define rule provider service

The rule provider is implemented as a BTT service. As with other BTT services, it
needs to be defined in service.xml file. BTT provides two pre-built rule provider
services:

= JLOG connector service

IBM ILOG can be used as rule engine to store channel management policy. The
service is used to connect ILOG to the access channel policy defined in it. The BTT
ILOG connector service supports the following attributes:

Name Description

id The unique id of this service

rulelD The rule id defined in ILOG accessed by service.

mode The mode of accessing ILOG. There are two possible
values: J2EE, J2SE and WebService. The default value is
J2EE

WSClientBeanName The name of the class to access ILOG when mode is
WebService. The class is generated by
WSClientBeanName.

The following is a sample service definition in service.xml:

<com.ibm.btt.channel.ruleprovider.ilog.ILogRuleProviderService
id="checkTransferAmountIlLogRule"
rulelD="/checkChannelRuleApp/BTTChannelRules" />

* Java Code Rule Provider Service

BTT provides
com.ibm.btt.channel.ruleprovider.java.JdavaCodeRuleProviderService
as base the class for Infrastructure developers to implement a rule provider service
in Java Code. Infrastructure developers need to extend the
JavaCodeRuleProviderService and override checkRule method.

public Map<String, Object> checkRule(Map<String, Object> params)

The method is used to do a check of business policy rules and decides if the request
can be accepted.

The following is a sample implementation of JavaCodeRuleProviderService. In
it, any transfer amount more than 10000 will be rejected.

public class TransferlLimitRulel3ervice extends JavaCodeRuleProviderService!
public Map<3tring, Cbject> checkBule (Map<3tring, Cbject:> argl) {
Double amount= (Double] argd.get("transfer amount™);
if j(=mmwount.doubleValue() > 10000.0)
argl.put ("accept™, Boolean. FALSE)
else

argl.put ("accept™, Boolean. TRUE) ;

return argi;

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 6 = Channel Policy Management and Extension = Channel level policy management 73

Furthermore, Infrastructure developers can implement their owner policy provider
service such as supporting other third part rule engines. To implement a policy
provider service, Infrastructure developers need to extend the abstract class
com.ibm.btt.base.Service and implement the
com.ibm.btt.channel.ruleprovider.IBTTRuleProvider interface.

Configure policy for channels

After implementing the channel policy handler and defining rule provider service,
Infrastructure developers need to configure the handler and service in btt.xml for
the specific channel. The following is a sample configuration for an html channel:

<kCol11 id="htmi">
<field id="encoding" value="UTF-8" />
<field id="cookies" value="true" />
<field id="runInSession" value="true" />
<field id="requestHandler"
value="com.ibm.btt.cs.html.AjaxHtmlRequestHandler" />
<field id="presentationHandler"
value="com.ibm.btt.cs.html.AjaxHtmIPresentationHandler" />
<field id="channelPolicyHandler"
value="com.ibm.btt.sample.channelpolicy.UserSecurityChannelPolicyHandler"/>
<field id="ruleService" value="UserSecurityProfileRuleService" />
</kCol1>

Exception handling

When the channel policy check rejects (PoTlicyResult.accept==false) the
request, the BTT Channel driver throws
com.ibm.btt.channel.ChannelPolicyException. By default, the BTT
presentation handler returns the exception to the client end. But the application
may want to return a more user friendly error message to the client end. In this
case, Infrastructure developers need to extend the channel presentation handler to
handle the exception.

For example, in the case of the html channel, the default presentation handler is
com.ibm.btt.cs.html.AjaxHtmIPresentationHandler

or

com.ibm.btt.cs.html.HtmlPresentationHandler.

To handle exception with application needs, Infrastructure developers need to
extend either of the presentation handlers above and override handleException
method.

public void handlekException(ChannelContext channelContext,
Exception e)

In the method, the presentation handler handles any exception thrown while
processing the request and navigates the user to the correct error page with the
applicable message. The following is an example of handleException method
implementation that demonstrates how to handle a ChannelPolicyException.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

74 CHAPTER 6 = Channel Policy Management and Extension = Channel level policy management

public clazs MyE-mlPreaentaticnHandler axtends Htwl-rosentationHandler |
i0verride
puhlin wnid handlefFxnapticn iThanme1Tnntexr = chanme1Tnntext, Fxeenbiom fi 4

if e instancecf ChannelPolicyException) {

L)

4= WL 0 =3 EodlloS L Lo

4 Ze2 if we have a responss to use
HttpSzrvleZEesponae res = JetlrgResponse |chanmellontext):
if (r23 '=nmll) {
try 1
Printiriter html{ut = rea.getlrizzr!):
htmllut . println("=slicy Chesk result:™):
htmllut . println(e.JetMesaagz])
! mateh (ICExceptiom exc) {

b el=e {
super.handleExcep-ion chamnalConzexkt, ef:

To apply the new presentation handler, Infrastructure developers need to configure
this presentation handler in btt.xml for the channel.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 6 = Channel Policy Management and Extension = Operation level policy management 75

Operation level policy management

Implement OpStep for operation level policy

To support operation level policy management, BTT provides
com.ibm.btt.channel.AbstractPolicyOperationStep as a base class for
Infrastructure developers to extend. The execute method in
AbstractPolicyOperationStep provides a default implementation which uses
the rule service to check the operation level policy. Infrastructure developers can
extend it based on the application needs. Meanwhile, Infrastructure developers
should implement the following two abstract methods:

protected abstract Map<String, Object> getlnputParameter()

The method is used to construct the input parameters to execute the method using
the data from the operation context.

protected abstract int processResult(Map<String, Object> result)

The method is used to parse the result returned from the rule provider service. The
return value of the processResult method is used to control the state transition
between opSteps.

The following is a sample OpStep implementation class that demonstrates how to
implement operation level policy.

public class CheckLimitOp3tcep extends lbstrsctPolicyOperationitep {

Foverride
protected Map<3tring, Zbhject:> getInputPerameter() {

Hap input = new HashMapi():

try {
Currency amount=(Currency)] this.getContext().getWValuelt ("transfer.amount™)
System. cout.println | "HEEEEEEEEEEAEE " amount . getClass ()) ;

input.put ("transfer amount”, amcunt.getWValue().doubleValue(l);
input.put ("CurrencyType™, amount.getCurrencyType ()

i catch (DSECbjectNotFoundException el |

|

i

return input;
i

Foverride

protected int processRzsult (Map<String, Chject> argl)] {
Buuleon socpel— (Booleon) scgl.gel (M@ocepl™) s
try {

getContext () .s2tValueldt ("transfer.transferlimiticeept™, accpet) ;
} catch (Exception e) {

e.print3tackTrace()

I
i

return RZ OK;

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

76 CHAPTER 6 = Channel Policy Management and Extension = Operation level policy management

Configure operation

After extending the AbstractPolicyOperationStep, Infrastructure developers
need to configure the related operation to use the opStep. In the operation
definition, Infrastructure developers need to configure an opStep. The imp1Class
should be the class that extends from AbstractPolicyOperationStep. The
refRuleService should be the rule provider service defined in service.xml. The
service will be used by opStep as the rule provider service. The following
demonstrates how to configure an operation to use opStep for operation level
policy management.

<operation id="checkLimitOp" impl1Class=
"com.ibm.btt.sample.transfer.operation.CheckTransferlLimitOperation">
<opStep id="initTransferOpStep" refRuleService="checkLimitRuleService"
impl1Class="com.ibm.btt.sample.transfer.operation.CheckLimitOpStep"
on0Do="return"/>
</operation>

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 6 = Channel Policy Management and Extension = Channel policy sample

Channel policy sample

The BPRuntimeTest.war file is provided as a channel policy sample. The sample
implements the real case that demonstrates how to use BIT Channel Policy. The
guide shows the code and configuration related to the channel policy and the
extension point.

How to run the sample

1 Deploy the WAR file to Tomcat or WAS.

2 Type the URL http://localhost:8080/BPRuntimeTest/EstablishSession to
start the sample.

[E hitpi//localhost:B080/BPRuntime Tes U Establishoession - Wi

E12)

—

£ | http://locathost:3080/BPRuntimeTest/EstaklishSession

5.0 Favorites | 55

(& http://localhost8080/BPRuntimeTest/EstablishSe...

Sample:
Start Information Submission

Start Account Transfer

3 Ifyou click Start Information Submission, the channel policy will not let you
run this transaction. The page below is displayed.

ﬁ Message Page - Wmdﬂws Internet Explore

£ | http://localhost:3080/BPRuntimeT est/Request?dse sessionld=2A619E1 F3AE310964F511

¢ Favorites | 55

(& Message Page

Policy check error: Transaction infoProc is not allowed by user01 !

4 If you click Start Account Transfer, the channel policy lets you run this
transaction. The sample implements a simple rule to the check transaction
limit. If the amount is over 10000, it displays an error page.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

77

78 CHAPTER 6 = Channel Policy Management and Extension = Channel policy sample

;_é httpe//localhost:B080/BPRuntimeTest/Request?ds...

Transfer Page 1
Please input account transfer info:
From Account Please select an account - 0.00
| Cross Region Country Spain - City
| Cross Barnk Bank Moon Bank -
Name Account Bank Comments
: Wage i
Messi 22223333444455 Bank of Mars Account I
CRonaldo §9898989121212 {Moon Bank i Bonus 0
: :Account il
Name C Ronaldo Hidden Account Tabl
To Account 89898989121212
To Account Confirm 89898989121212
Amount $29,998.50
Comments
| Save to Account List
| | SMS Notification
Password [(IIXXY]
Verification code 0000 ~“~ 00t :
0000 -
Submit Reset

& httpi/ilocalnost:8080/BPRuntime
<8

{3 Fawvorites T:‘:\

cst/Request - Wi

' £ | http://localhost:3080/BPRunt meTest/Request

| {& httpy/localhost:8080/BFRuntimeTest/Request

ITransfer Amount is Over Limit.. I

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 7

Process Editor Extension

BTT provides a Processor Editor for developers to visually construct a BTT flow.
The Processor Editor is shown in the Processor tab of BTT Transaction Editor.
Developers can compose a BTT flow by dragging and dropping different kinds of
states from the palette and connecting them with transitions. The following figure
shows a flow composed with the Processor Editor.

|
A
initial InitOp Next submitd FinalOk
\ il g i1a
g
e M
{E

FinalMatOk

Furthermore, the BTT Processor Editor supports two kinds of editing modes.
According to the project requirement, Infrastructure developers could customize
the default mode of BTT Processor Editor.

= Compatibility Mode: In this mode, developers can operate on all the possible
properties of a state or a transition.

* Default Mode: In this mode, the property editor of a state or transition is
simplified. A developer with less BT'T knowledge could also use the Processor
Editor to compose the BTT flow.

BTT Transaction Editor stores the BTT flow in a file with the extension of
transaction, which describes a generic, channel-independent flow. To run this flow
in the runtime environment, the transaction file needs to be generated into a BTT
XML file (Select the option Transaction Editor from the context menu of
transaction file, then choose the option Generate BTT Transaction XML).

This transaction file is a channel-neutral flow definition, which will be generated
based on different channel transaction generators. Actually, each BTT channel has
its own generator which is defined via the extension point
com.ibm.btt.tools.transaction.editor.generator. For example, a BTT

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

79

80 CHAPTER 7 = Process Editor Extension =

HTML channel has its own generator named
com.ibm.btt.tools.transaction.generator.xml.GeneratorFactory.In
case several generators are defined, developers could choose the preferred one by
choosing Window > Preferences > Transaction Editor > Generator option.

¢ = Preferences @T

Generator ST 1

General
Ant
CcDo Mame Implement Class Description
Ceore Tools Diagram iry Default Generator com.lbm.btt. tools. transac,.. This generator offers def. ..
EMF Compare
Help
Tnatall) Ipdate
Java
Java EE
JavaScript
Model validation
Plug-in Development
Run,Debug
Server
Single Sian-on
Tasks
Team
|- Transaction Editor
Appearance
Connertinns
Generator
Imparter
Pathmaps
Printing
Rulers And Grid
User Interface
|- Usage Data Collector |

Please select generator implenent dass here:

| Restore Nefanliz | | Apply |

&

A generator can work with one or more mapping definition files, which contain the
tag mappings from PageState to htmlState, property mappings from page to
typeldInfo and the logic to be injected into the generation process. In case there are
several mapping definition files, Infrastructure developers should make sure they
have not defined overlapped tags set. Otherwise, there is no guarantee about which
mapping rules will be taken into account.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 7 = Process Editor Extension = Extend processor editor object 8 1

Extend processor editor object

To create a new Processor Editor object, the Infrastructure developers need to
define it in an xml definition file and then register this definition into the Palette
Registry as a plug-in extension. After that, the object will be shown in the palette of
the Processor Editor, and can be dragged and dropped into the canvas of Processor
Editor. In the following sections, we will describe how to create a new processor
editor object in more details.

plugin.xml Palette Editor
OK
State Extension Page State Createp{ Page State
TOK—
State Extension e Sub Flow State —+
S P
e - Y)
Parse Registry | Operation State |- OK
£ : ' Create
|\Tran5|t|0n Exten3|0n>/ | | | operaton state
|
' ¥
Fill Transitions — OK
N | Create
1 Transition -1
rra

Create configuration file for palette object

BTT defines a palette object by an xml definition file which describes how this
object will be shown in the palette and the canvas of the BTT Processor Editor,
which properties of the object can be edited, which property editor will be used for
the properties. The following sections will describe the tags of an object
configuration file in more details.

There are two types of palette objects: state object and transition object. For a state
object, there are three kinds of tags used in its configuration file:
Appearance

This tag defines how to display the extended state object in the palette. The table
below shows the available attributes for an Appearance tag.

Attribute Table Description

gradient true or false

fontColor This attribute is used to defined the font color in RGB, such
as: fontColor="0,0,0"

backgroundColor This attribute is used to defined the background color in
RGB, such as: backgroundColor="255,216,1"

font This attribute is used to indicate the font style of the state
shown in palette, such as: font="Arial-regular-10"

Properties tag of state

This tag lists all properties of a state object. It needs to contain one or more
Property tags.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

82 CHAPTER 7 = Process Editor Extension =

Extend processor editor object

Property tag of state

The tag describes how the Processor Editor is to display and edit a property. The
table below shows the attributes for a Property tag.

Attribute

Description

name
defaultValue
hidden

editRule

description

required

The property name identifier.
It corresponds to the property value by default.

It specifies if the property must or not be displayed. Possible
values are: true or false. If it is true, the attributes described next
don’t apply. The default value is false.

It is the property editor that will be used by the user to enter the
property value. It should be the same as any rule id in table 7-3.
If it is not specified, a default editor is assigned

It contains the text to be used as tooltip.

It indicates if the property is mandatory (user must enter a value)
or not. Possible values are: true or false. Default value is false.

Below are predefined property edit rules:

Rule ID Description

Boolean For boolean chosen rule
XValidate For XValidate property editor rule
Context For Context chosen rule
ConditionAdjust For Condition adjust rule
OpStepAction For OpStep action chosen rule
OpStepCondition For OpStep condition rule
Operation For Operation chosen rule
Eventld For Event Id chosen rule
PageSelection For Page chosen rule

Below is an example of state object configuration file:

<?xml version="1.

0" encoding="UTF-8"7>

<state xmlns="http://btt.ibm.com/StateSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://btt.ibm.com/StateSchema StateSchema.xsd ">

<appearance backgroundColor="254,46,154" font="Arial-italic-20"

<properties>

fontColor="0,0,0" gradient="true"/>

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 7 = Process Editor Extension = Extend processor editor object 83

<property name="Page" displayName="Page Name"
defaultValue="" hidden="false"
required="true" description="Page file path"
editRule="PageSelection" />

<property name="Back Allowed" defaultValue="False" hidden="false"
required="false"
description="Specifies the possibility to use the back button from

the navigator" editRule="Boolean" />

<property name="id" defaultValue="" hidden="true" required="false"
description="id" editRule="" />
</properties>
</state>

For a transition object, there are three tags in its configuration file:

Appearance tag of transition

It defines how to display a transition object in palette and canvas. The table below
shows the attributes for an Appearance tag.

Attribute Description

lineColor Color in RGB. For example, 255,255,255. Default value is
0,0,0.

lineWidth Line width in pixel. Default value is 1.

lineStyle Possible values are: Solid, Dash, DashDotDot, DashDot, Dot,

Double. Default value is Solid.

arrowTypeStyle Possible values are: None, OpenArrow and SolidArrow.
Default value is SolidArrow.

font The font.

fontColor Color in RGB. For example, 255,255,255.

Transition object configuration file should include Properties and Property tags
which are the same as state object described previously.

Below is an example of transition configuration:

<transition xmlns="http://btt.ibm.com/TransitionSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://btt.ibm.com/TransitionSchema TransitionSchema.xsd ">

<appearance lineColor="0,0,0" lineWidth="1" TineStyle="Solid"
arrowTypeStyle="SolidArrow" font="Arial-regular-10"
fontColor="0,0,0"/>
<properties>
<property name="Event" hidden="false" required="true"
defaultValue="" editRule="EventTransitionBeta"/>
<property name="Input Data Format" required="false"
description="ZInputFormat" editRule="MapperFormat"/>
<property name="Output Data Format" required="false"
description="%0utputFormat" editRule="MapperFormat"/>
<property name="Skip Validation" defaultValue="false"
description="%TransValidated" editRule="Boolean"/>
<property name="7id" defaultValue="" hidden="true" required="false" />
</properties>
</transition>

Register palette object

To register customized palette object to the Processor Editor, Infrastructure
developers need to add an extension point for this object in the plugin.xml file of
his extension plug-in. To register the object, do the steps that follow.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

84 CHAPTER 7 = Process Editor Extension = Extend processor editor object

Open plugin.xml file.

Click the Extensions tab.

Click Add.

In Extension Point Filter field, type com.ibm.btt.
Click com.ibm.btt.tools.transaction.dominate.palette.

Click Finish.

N & U1 A W N =

Right click com.ibm.btt.tools.transaction.dominate.palette then click
New > state or New > transition to create the applicable object.

':ype filker besxt

[F-4= cam.ibrm.btt. tools. i editor2 widgets Mane:

<= com,ibm. btk tools, xui.editor2 generatar

+|-=com,lbm,bre.tools, xul,editor 2 propertles

[SEEEE o ibrn, bkt bools action, do
A Tew »
. R
El-= com.ibrm.btt . kools. bransaction. edit Delste _ transition
configftransactionmapping. xm L. .
CligntPromptRule (rule) {5 show Description " find derlarin

_5] Open Schema
=5 Find Dieclaration

57 Find References

of Cut Chrl+3
= Copy Chrl+C
Paste Chrl+y

Rewerk
Save

Externalize Strirgs...

8 In Extension Element Details dialog box, type the applicable information.

* name field requires inputting the name of the object. It serves as ID, so should
be unique.

= label field requires inputting the display name of the object, the label will be
shown in palette as object name. It supports NLS.

* smalllcon field requires selecting an image to display the object in palette of
Processor Editor. Image in 16x16 pixels is recommended as it is consistent with
existing BTT objects.

* largelcon field requires selecting an image to display the object in the canvas
of the Processor Editor. Image in 32x32 pixels is recommended as it is
consistent with existing BTT objects.

= config field requires inputting file name of object configuration xml file
described in ‘Create configuration file for palette object’ on page 81.

= description field describes the function of the state, which will be shown in
palette when cursor moves over the icon in palette.

= stateParser field indicates the class that is used to parse events of the state
automatically.

Below is an example:

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 7 = Process Editor Extension = Extend processor editor object 85

Extension Element Details

Set the properties of "state”, Requirad Fields are denaked by ™",

name*: ClientPramptState

label*: ClientPrompk

smalllcor® joonsfinfola, PRG | Browse. ..
largelcon® iconsfinfo3z, PHG
config®: palette/ClientPrampkS:ate, xml
descripkion:

stateParser:

Create and register object mapping

After Functional developers complete composing the XUI file, they select
Transaction Editor->Generate BTT Transaction XML function and the BTT
tool will automatically generate BTT transaction xml file for this transaction file. In
order to generate proper xml tag for the customized processor object, Infrastructure
developers need to create a new object mapping file and register it as plug-in
extension.

Create object mapping file

In a processor object mapping file, it should include one mappings tag. The
mappings tag should contain one or more tag-mapping elements. Each tag-
mapping tag can contain property-mapping element.

The figure below demonstrates the relationship:

[] (tag-mappingType) [] {property-mappingType)
:IEI . (%] {rappingsType) ! Fram string From string
tag-mapping [1.*] (tag-mappingType) |+ to string to string
property-mapping [0..*] {property-mappingType) T rule string

Attributes of tag-mapping tag:

Attribute Description

from The tag name in .transaction file.

to The tag name in .xml file

Attributes of property-mapping tag:

Attribute Description

from The tag name in .transaction file. Required
to The tag name in .xml file. Required
Rule The id of property conversion rule to convert the tag. Predefined

rule is described in the table HTMLFinalldRule.

Predefine rules: HTMLFinalldRule

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

86 CHAPTER 7 = Process Editor Extension = Extend processor editor object

Rule ID Description

HTMULFinalldRule The rule of converting final state id from neutral flow
file to html channel flow file

HTMLOperationldRule The rule of converting operation state id from neutral
flow file to html channel flow file

HTMLPageldRule The rule of converting page state id from neutral flow
file to html channel flow file

HTMLSubflowldRule The rule of converting subflow state id from neutral
flow file to html channel flow file

HTMLProcessorIdRule The rule of converting processor id from neutral flow
file to html channel flow file

TransitionldRule The rule of converting transition id from neutral flow
file to html channel flow file

TransitionTargetRule The rule of converting transition target from neutral
flow file to html channel flow file

Below is a sample of object mapping file:

<mappings xmlns="http://btt.ibm.com/MappingsSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://btt.ibm.com/MappingsSchema MappingsSchema.xsd ">

<tag-mapping from="ClientPromptState" to="htmIPromptState">
<property-mapping from="7id" to="id" rule="ClientPromptRule" />
</tag-mapping>
</mappings>

Register object mapping
1 Click the Extensions tab of plug-in file.

2 Click Add.
The New Extension dialog appears.

Click com.ibm.btt.tools. transaction.editor.generator.
4 Click Finish.

Right click com.ibm.btt.tools.transaction.editor.generator then click
New > generator.

6 In the Extension Element Details dialog box, type the applicable
information.

= file: put the mapping file defined previously.

* target: type Default Generator.

Create and register property generation rule

When generating a flow xml file, the default rule is to use to String to replace from
String simply. But there are more complex conversion rules when generate flow
xml file.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 7 = Process Editor Extension = Extend processor editor object 87

BTT implements several pre-defined rules to convert existing processor objects.
When Infrastructure developers create new object, it is very possible for them to
create new conversion rule to generate xml lines for the object. To create a new
generation rule, Infrastructure developers need to create a Java class to implement
the rule, and then register the rule as plug-in extension.

To create a generation rule class, Infrastructure developers need to extend the BTT
abstract class com.ibm.btt.tools.transaction.extend.generator.Rule and
override the process method. In the process method, Infrastructure developers
can manipulate the target tag object as their needs such as adding new attribute and
changing attribute an name or value.

public void process(Taggable object, Map<String, String> attributes,
PropMapping mapping, String value)

After creating a new rule class, Infrastructure developers need to register this rule in
plug-in.

1 Click the Extensions tab of plug-in file

2 Right click com.ibm.btt.tools. transaction.editor.generator then click
New > rule.

3 Inthe Extension Element Details dialog box, type the applicable information
* name: type the name of rule as unique identifier

* class: put the implementing class.

Extension Element Details

Set the properties of "rule”, Required fields ae denoted by "+,

name*: ClientPrompkRule
class*; cam,ibrn, bkt alphasample, bransaction. generator . rule, ClientPro
description:

Implement state in runtime

During the flow execution process at runtime, each state composed in this flow will
be represented as a Java object. When the flow enters a state, the Java object
corresponding to this state will be initiated and activated by processor.

After creating the palette object and its mapping rules for the Processor Editor,
Infrastructure developers need to implement a Java class corresponding to this
object. The class should extend class DSEState or its derived classes such as
DSEHtm1State, and override the two methods that follow to implement state
specific logic.

public Object initializeFrom(Tag aTag)
throws java.io.IOException,com.ibm.btt.base.DSEException

This method is invoked when the processor initializes the state from tags. As the
state may have several properties, Infrastructure developers need to initiate these
properties from tag attributes when the state is initiated. The following code snippet
is the method implementation sample:

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

88 CHAPTER 7 = Process Editor Extension = Extend processor editor object

public Chject initializeFrom(Tag aTag) throws java.io.I0Exception,
com. ibm.btt.hase.D3EExcestion {
super.initializeFrom(aTag) ;

Striny nomc — nuall, waluc — nuall;
Taghttribute attribute = null:

for [(java.util.Enumeration e = aTag.getldttrlList() .elements(); e.hasMoreElenments();:] {
actribute = [Taglttribute) e.nextElement(]:

name = attrikbute.getMName():
walue = (3tring) attribu-e.getWValue():;
if (name.equals (HTMLPromptState . MESSAGE)) {
actromptMocooage (valac) 2
i
i
return this;

public void activate() throws DSEInvalidArgumentException, DSEProcessorException

This method is invoked when the processor actives this state. Infrastructure
developers need to override this method to implement state specific logic. The
following code snippet is the method implementation sample:

public void activate () throws DSEInvalidirgumentException, D3EProcessorException
try |
if (getPromptMessage () '= null){
this.getProcessor () .getContext () .setValuelt (HTMLPrompritate. MESSAGE FIELD, getPromprMessage()):
i
} catch (D3EChjectMNotFoundException e) {

if (log.doError()) {
String error = "HTMLPrompt3tate: element '™ + HTHLPrompt3tate. MESSAGE FIFLD + "' iz not defined in Context";

log.error (error, e);
i
e.printi3tackTrace ()
t catch (D3EInvalidRequestException e)

if (log.doError{)) {
Ftring error = "HTMLPrompt3tsate: error in activate()™:

Jlog.error (exror, e);
i ¥
super.activate();

Create and register global function

Global function is used in the Condition state of the Processor Editor to define
expression for different conditions. BTT implements several functions by default.
Infrastructure developers may have a requirement to extend BTT pre-defined
functions to implement project specific functions. An plug-in extension point is
provided for Infrastructure developers to implement project specific functions.

Infrastructure developers need first create a function definition file to declare the
functions that will be implemented. The following is an example of function

definition file.

<functions>
<function name="concat" returnType="String" description="" >
<parameters>
<parameter name="stringl" description="%concatStringl" type="String" />
<parameter name="string2" description="%concatString2" type="String" />
</parameters>
</function>
<function name="length" returnType="Integer" description="" >
<parameters>
<parameter name="stringl" description="%descStringl" type="String" />
</parameters>
</function>
</functions>

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 7 = Process Editor Extension = Extend processor editor object 89

Infrastructure developers then need to create a Java class to implement the
declared functions. The class contains the set of implemented static methods
corresponding to the declared global functions.

Lastly, the Infrastructure developers need to register the definition file and Java
class as an plug-in extension point called
com.ibm.btt.tools.transaction.dominate.palette.globalFunctions.In
the Extension Element Details dialog, type the following information:

class: This is the global functions declaration class.

config: This is the global functions definition file.

Create editor object by dragging items

The Processor editor supports a drag-and-drop operation to the XUI page of flow
and operation and it will create Page state for XUI page dropping, SubFlow state
for flow and Operation state for operation. Meanwhile, you can provide your own
drag-and-drop code to extend the Processor editor to accept another type drop as
well override the default drag and drop support on page, flow and operation drop.

The extension pointis com.ibm.btt.tools.transaction.diagram.fileDrop.

=l-<r= caom,ibm.btt, tools, transaction, diagram. fleDrop
{dndHandler)
[¥] {dndHandler)

Attributes for the drag-and-drop handler are below:

class: The implementations of the interface
com.ibm.btt.tools.transaction.diagram.file.drop.IDiagramkEditorDro
pFileHandler. It defines two methods: accepts and parseDroppedFile -the
former one is used to check whether the handler can accept the dropped item and
the latter defines the detail action on drop. Recommended to inherit from
com.ibm.btt.tools.transaction.diagram.file.drop.DefaultDiagramkdi
torDropFileHandler.

priority: The priority of the handler. On dropping an item, the Processor editor
will find the handler with highest priority to treat the current drop action. The valid
values are: low | medium | high.

If you want to override the default actions on page/flow/operation drop action, add
a drag-and-drop handler with medium or high priority since the priority of the
default handler is low.

Samples:

FlowEditordSFileDragAndDropHandler and
FlowEditorXUIFileDragAndDropHandler are two customized drag-and-drop
handlers registered to the Processor editor which lets the javascript file(.js) create a
new customized JSSate state in the processor and override the default XUI drop
by adding a comment to the page state created.

The implementation stuffs of this sample are in Drop4Extension project. The table
below has a list of stuffs for this sample:

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

90 CHAPTER 7 = Process Editor Extension = Extend processor editor object

Stuff Name Description Reference Materials Location
JSState.xml State configuration file ‘Create configuration file palette folder in
for palette object’ on Drop4Extension project
page 81
Info16.PNG and Icons used to show State ‘Register palette object’ icons folder in
Info32.PNG in Processor Palette and on page 83 Drop4Extension project
Canvas
JSStateMapping.xml Palette object mapping ‘Create and register object config folder in
file mapping’ on page 85 Drop4Extension project
JSStateRule.java Property generation rule ~ ‘Create and register object src/com/ibm/btt/tools/dr

FlowEditorXUIFileDrag
AndDropHandler java

FlowEditorJSFileDragAn
dDropHandler java

for JSState

Drag-and-drop
implementation class in
runtime

Drag-and-drop
implementation class in
runtime

mapping’ on page 85

0p4extension./ ransaction.
/generator/ule folder in
Drop4Extension project

src/com/ibm/btt/tools/dr
0p4extension/ transact
ion/presentation folder in
Drop4Extension project

src/com/ibm/btt/tools/dr
op4extension/transaction
/presentation folder in
Drop4Extension project

NLS support

National Language Support (NLS) is provided by the Processor Extension Editor.
The attributes below are supported for NLS:

= Tabel (in State and Transition palette extensions)

= description (in State and Transition palette extensions)

= displayName (in state and transition configuration files)

= description (in state and transition configuration files).

The definition of a NLS string must have the % prefix. At the same time, the pair
<string key=string value> must be defined in the plugin.properties file.

The following is an example of NLS String definition.

<property name="Page" displayName="%PageName" defaultValue=""
hidden="false" required="true"
description="%PagePath" editRule="PageSelection" />

Extend runtime processor

After a processor flow is composed by the Processor Editor, the flow can be
executed at runtime. Infrastructure developers can also change the processor
runtime behavior according the project requirement. For example, by default, the
BTT processor does not process errors or exceptions that occur in a state at
runtime. When there is an error in a state during processor execution, an error page

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 7 = Process Editor Extension = Extend processor editor object 9 1

will be returned to end user. Application developers may want to provide more
friendly interactions with end user (such as to prompt user decide continue or
cancel the flow). They need to define a state to handle a specific error. Meanwhile,
they need to define error event and transition. In this case, application developers
have to spend some effort to define error handling states, events and transitions for
each processor. If application developers want to implement implicit error
handling at runtime for all processors, they can extend the default BI'T processor at
runtime.

As the BTT processor at runtime is channel specific. The following section gives
information on how to extend the BTT html processor at runtime. For other
channels, they can be extended in the same way.

How a flow processor works

The following process describes how a flow processor handles a flow through states
according to the definitions until the process reaches a final state:

1 The processor externalizer instantiates a given instance of the processor from
its external definition. The behavior of the processor externalizer is the same as
other BTT externalizers to create an object.

2 The externalizer searches for the name of the flow processor.
It obtains the flow processor class from the configuration file.

4 It sends the initializeFrom(Tag aTag) method to the flow processor instance to
initialize it according to the definitions embedded in the tag.

5 When the toolkit initializes an instance of a flow processor, it caches in memory
all of the possible states along with their actions, transitions, and data without
actually instantiating them. Objects from these definitions are only created at
runtime when they are required during the life cycle of the process.

6 The processor externalizer implements an object cache to significantly improve
performance.

7 The toolkit executes the processor instance. The process handled by the flow
processor starts in its initial state and follows a defined path until it enters one of
its final states.

8 When the processor enters a state, the state registers with notifiers as being
interested in any events specified in the state's transitions. The notifiers can be
any notifier available in the context or any of the actions being executed.

9 The processor synchronously executes the entry actions of the state in the order
in which they appear in the external definition of the state. If an entry action
causes an event to fire and the event belongs to a transition defined for the
state, the processor places the event in an internal queue to synchronize the
actual handling of events.

10 After executing the entry actions, the flow processor checks the event queue
and executes any events it finds there. If there are no events in the queue, the
processor waits in the state for a triggering event. The use of the event queue to
synchronize events does not prevent actions and guard conditions from having
the opportunity to handle an event fired by a notifier while the processor is
executing entry actions. The processor provides the event to them without
losing the original event data.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

92 CHAPTER 7 = Process Editor Extension = Extend processor editor object

11 To execute an event, the flow processor executes the actions for the event's
transition after evaluating the guard conditions for each action. Depending on
the results of evaluating the guard conditions and applying flow modifiers, the
flow processor performs the exit actions defined for the state and then enters
the defined target state to advance the process.

Extend flow processor

The DSEProcessor class extends the DSENotifier class and implements the
Processor and Externalizable interfaces. The class diagram is shown as below:

DSENotifier Q—— DSEProcessor <Class> [— —
<class>

DSEHtmlProcessor
<Class>

Infrastructure developers need to extend
com.ibm.btt.automaton.htmIDSEHtmIProcessor class to customize flow
processor behavior for the HTML channel or extend
com.ibm.btt.automatonDSEProcessor class for other channels.

After extending the BTT default processor implementation, Infrastructure
developers need to register the new implementation in the class table of btt.xml.
For example, for the HTML channel processor, Infrastructure developers need to
replace the original implementation class with the new one. The following is an
example:

Change definition from:
<field id="htmlProcessor" value="com.ibm.btt.automaton.html.DSEHtmIProcessor" />
to

<field id="htmlProcessor"
value=“com.ibm.btt.alphasample.automation.html.AlphaHtmlProcessor" />

After that BTT will use the extended process class to handle the flow in runtime.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 7 = Process Editor Extension = Processor editor extension sample 93

Processor editor extension sample

Two samples are provided to demonstrate how to implement Processor Editor
extension in BTT framework.

ClientPromptState sample: The sample demonstrates how to implement a
Processor Editor palette state object and how to integrate it into the Processor
Editor.

AlphaHtmlIProcessor sample: The sample demonstrates how to customize
the BTT html processor behavior in runtime.

ClientPromptState sample

The ClientPromptState is a state object of the Processor Editor. It is designed to
show prompt information in a web page to the end user during execution of the
flow processor. It gives the end user options to continue or cancel the flow.

The example of a ClientPromptState in runtime is shown as below:

User Irformation:

Info: The request will be submitted, would you continue?

YES MO

In this sample, primary Processor Editor object extension tasks are covered to help
Infrastructure developers have overall understanding of implementation quickly.
Below are list of tasks covered in this sample:

Creating State object configuration file.

Registering state as a plug-in extension point.

Creating State object mapping file.

Registering State object mapping as a plug-in extension point.
Implementing property generating rule

Registering property generating rule as a plug—in extension point.

The implementation stuffs of this sample are in two projects: AlphaSampleWidget
project and BTTExtensionWeb project. ‘Environment Preparation’ on page 13
describes how to create the two projects. Below are list of stuffs for this sample:

Stuff Name Description Reference Material Location
ClientPromptState.xml ~ State configuration file ‘Create configuration file palette folder in
for palette object’ on AlphaSampleWidget
page 81 project
Infol6.PNG and Icons used to show State ‘Appearance tag of icons folder in
Info32.PNG in Processor Palette and transition’ on page 83 AlphaSampleWidget
Canvas project
transactionmapping.xml Palette object mapping ‘Create and register object config folder in

file

mapping’ on page 85 AlphaSampleWidget
project

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

94 CHAPTER 7 = Process Editor Extension = Processor editor extension sample

Stuff Name Description Reference Material Location

ClientPromptRulejava Property generation rule ~ ‘Register palette object’” src/com/ibm/btt/alphasa
for ClientPromptState on page 83 mple/transaction/generat
or/rule folder in
AlphaSampleWidget
project
HtmlPromptStat.java State implementation ‘Create object mapping src/com/ibm/btt/alphasa
class in runtime file’ on page 85 mple/automation/htmlfol

derin BTTExtensionWeb
project

AlphHtmIProcessor sample

The AlphaHtmlProcessor extends the BTT HTML channel processor to
demonstrate how to handle implicit events. With this processor, developers need
not to define any state or transition in processor to handle user prompt event. The
processor will handle the user prompt event implicitly.

For example, the following figure shows a simple traditional account transfer flow.
If an error occurs (such as the amount is more than daily transferring limit) during
the transferProcessOp process account transfer request, a page will be returned to
user ask for input again or cancel the process.

B =
- T T nex | Tane
initial InitCp transfer. xui transferProcessOp

AN

retry
™

FinalOk

Efror

% cancel @
userPrompt. xui FinalMctQk

But with AlphaHtmlIProcessor, developers do not need to userPrompt and
FinalNotOk state. The processor will handle implicitly. The following figure shows
flow using AlphaHtmIProcessor.
. W
FinalOk

[|r> init
initial InitCOp transfer. xui

In this sample, primary runtime processor extension tasks will be covered.

.

transferProcessOp

The implementation stuffs of this sample are in two projects: AlphaSampleWidget
project and BTTExtensionWeb project. ‘Environment Preparation’ on page 13
described how to create the two projects. Below are list of stuffs for this sample:

The implementation stuffs of this sample are in BTTExtensionWeb project. Below
are list of stuffs for this sample:

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 7 = Process Editor Extension = Processor editor extension sample 95

Stuff Name Description Reference Material Location
AlphaHtmlProcessor.java Java class for runtime ‘AlphHtmlIProcessor src\com\ibm\btt\alphasa
processor extension sample’ on page 94 mple\automation\htmlfol

der in BTTExtensionWeb
project

flowForProcessorExtensi Sample flow of using src\definitions\processors

on.transaction AlphaHtmlProcessor folder in
BTTExtensionWeb
project

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

96 CHAPTER 7 = Process Editor Extension = Processor editor extension sample

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 8

Global Function Extension

BTT global functions provide common utility functions to manipulate data for BTT
visual editors. BTT global functions are available in three BTT visual editors:

= XUI ECA editor
= Flow condition editor
* Flow mapping editor

The following screen shot is the usage scenario of the BTT global functions in the

XUI ECA editor.

.Please select a value O] x|
Elobal Function - l

Constant
‘Widget Function
‘widget Property
|E:epression

- ng ranipulation
© Date IManipulation
@ Murmber Manipulation

------ 3 List and Table Manipulation

@ Function call has nat beeninitialized

Expression:

[0]4 I Cancel |

The following table lists the pre-defined global functions provided by the BTT
product.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

97

98 CHAPTER 8 * Global Function Extension =

Is Is
Category Function Name Description Server [Client
Side ide
String concat Concatenates two strings Y Y
[Function
length Returns the length of a string Y Y
contains Returns whether a string is part of another Y Y
string
subString Returns a portion of a string Y Y
indexOf Returns the position of a substring Y Y
lastindexOf Returns the position of a substring starting from [Y
the end
replace Replaces all occurrences of a substring in a string Y Y
with a new value
trim Removes the leading and trailing blanks Y Y
upperCase Converts a string to its upper case Y Y
lowerCase Converts a string to its lower case Y Y
compare Compares two strings lexicographically. Returns [Y Y
if string1 is the same as string2, returns 1 if
string] is after string2, returns -1 if stringl is
before string? in dictionary order
comparelgnoreCase |Compares two strings lexicographically, ignoring [Y Y
case differences. Returns 0 if string] is the same
as string?2, returns 1 if string1 is after string2,
returns -1 if string1 is before string2 in dictionary
order
Number round Returns the closest long or integer value to a Y Y
Function number
truncate Returns the truncated value of a number Y Y
absolute Returns the absolute value of a number Y Y
numberToString Returns value in string format Y N
parseNumber Returns a number parsing from a string Y IN

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 8 * Global Function Extension =

IDate today Returns the current date Y Y
IFuncti
unctiont dayOfWeek Returns the day of the week in number Y Y
year returns the year of the day in number Y Y
month Returns the month of the day in number Y Y
day Returns the date of the day in number Y Y
after Returns the date which is after than a given date [Y Y
with specified (days, months, years) period
Before Returns the date which is before than a given Y Y
date with specified (days, months, years) period
daysBetween Returns the days between the two dates in Y Y
decimal as time in day is taken into account
natureDaysBetween [Returns the nature days between the two dates [Y Y
ignoring time difference
parseDate Returns date in BTT Date type, 'pattern’ Y Y
argument defines the format (such as
'[dd/MM/yyyy') of the date parameter
Collection [tableSize Returns the number of elements in an Y IN
[Function IndexedCollection
tableAdd Adds the (numeric) values of a given columnin [Y N
an IndexedCollection
getRowByIndex Returns the element of the given Y N

IndexedCollection according to the index

Infrastructure developers could extend the BTT global functions to implement
application specific utilities, such as function of converting a String to its lower case

or upper case.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

99

100 CHAPTER 8 = Global Function Extension = Extend global functions

Extend global functions

The following figure shows the steps for extending BTT global functions.

) TN W) W)

Implement global functions

If a function is expected to run on the client side, the function should be
implemented using the JavaScript language. If a function is expected run on the
server side, the function should be implemented using the Java language. At the
same time, the function should be declared as public and static method.

The following code sample demonstrates how to implement a global function for
server side.

package com.ibm.btt.alphasample.drop3.globalfunction;
public class ExtendedFunctions {

,u"’**
* Converts the characters in this String to lovercase.
*
+ @return a new Itring containing the lowercase characters egquivalent to the
* characters in this String
*
public static 3tring tolowerCase (String value) {
return wvalue == null ? wvalue : wvalue.tolLowerCase():
i
,u"’**
* Conwverts the characters in this String to upper case.
*
+ @return a new 3tring containing the upper case characters ecgquivalent to the
* characters in this String
*
public static 3tring toUpperCase (String value) {
return wvalue == null ? wvalue : wvalue.toUpperCase();
i

The following code sample demonstrates how to implement a global function for
the client side.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 8 = Global Function Extension = Extend global functions 10 1

dojo.provide ("com. ibm.btt.globalfunctions. FunctionExtension™) ;
(functioni) {

var bttExtension = {
toLowerCase : functioniobj):
if(obj '= null)
return obj.tolowerCase(;;
else
return ohj;
i

isNunber : functioniobj) {
if ((obj.conotructor ——— MNuwbcr && !ioFinitc(obj) &£& !ioMNalM{ockhi))
|1 A% [=+] 2%a+5 |~ [+ 2hd+ v d+3/ . cest (obi)) |
return true:;
b oelse |
return false:;
i
i
isNull : functioniobj) {
return typeof (ochj) == "undefined”™ || ohj == null ? true : false:
i
ri
window.ExtensionFunctions = bttExtension;

P

Describe global functions in xml

A global function should be described by an xml file before the BTT tools can show
it in the visual editors.

functions tag

It contains one or more function tag.

function tag

The tag describes a function signature. It may contain parameter tags. The
following is list of the attributes of a function tag.

Attribute Name Description

name The name of the function. It should be unique in a file.

returnType The return type of the function such as String, Date, Number
and Boolean.

Description The description of the function. The description will be
shown in visual editor tool when mouse hovers on the
function.

The attribute value supports NLS when it starts with ©%’.

isServer Indicates whether the function can be used on server side or
not. When it is false, the function will not be shown in
transaction editors. Default value: true

isClient Indicates whether the function can be used on client or not.
When it is false, the function will not be shown in XUI editor

Default value: true

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

102 CHAPTER 8 = Global Function Extension = Extend global functions

parameter tag

The tag describes a parameter of a function. The following is the list of the
attributes of a parameter tag.

Attribute Name Description

name The name of the parameter which will be shown in visual
editors.
description The description of the parameter. It supports NLS when it

starts with %.

type The data type of the parameter such as String, Date, Number
and Boolean

The following is an example of global function definition.

<?xml wersion="1.0" encoding="UTF-5"7:
<functionslist xmlns="http: A btt.ibm.com/FuzctionalistSchema™ xmlna:xsi="http: Swww. w3, org /2001 XMLEchema-instance™
xSi:schemalocation="http: btt.ibm. com/TunctionslistSchems BTTFunctionss. xad™ »

<functions:»
Clo— EEEEXXXXXXXXXXLLLLS Sering Function Extension FEEFFEEEEEEETEETEEEET
<IUNCLLION N&Eme="tolowerCase” returnlype="siring” descriptlon="$iloLowerlaselescription™s
<parameters:
<parameter name="walue” description="$tolowerCase param” type="String” />
</ narameters:
</ func-ion:
<!—-— Walidate isClient parameter —--»
<function name="tolpperCase” returnType="String” description="$Tolpperlaselescription™ isClient="falsea">
<parameters:
<parameter name="value” description="$tolpperCase param” type="String” />
</ narameters:
=/ funcsions
<!—-— Walidate isSerwver parameter —--»
<function name="isNull" returnType="Boolean™ description="$isNullDescription” isServer="fzl=se":>
<parameters:
<parsmeter name="ralue" description="%isNul;_param" type="String™ />
</ narameters:

</ func-ion:
<function name="isNumber" returnType="Boolesn™ description="$IsNumberlescription™ izServer="false">
<parameters:
“parsmeter name="ralue” description="fisNumher param" types"Striang’ S
</ narameters:
</ func-ion:
</ functions:>
</functionslisz»

Register for tooling

To enable the extended global functions being shown in the BTT visual editors,
Infrastructure developers need to register the functions as a BT'T plug-in extension:

Open plugin.xml file

Click the Extensions tab.

Click Add

In the field Extension Point Filter, type com.ibm.btt.
Click com.ibm.btt.tools.common.globalFunctions.

Click Finish.

A 01 A W N =

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 8 = Global Function Extension = Extend global functions 103

P et i [Io[=]
Extersion Point Selection

Creatr a v BTT Gk Furelions sxtrenion,

Estormion Ports | Gtandon ek |

[Erfer duscipbon of s estension point]

Envalabie templates for bt global functions:

7 | o] cwen |

7 Right click com.ibm.btt.tools.common.globalFunctions then click
New > function.

% Extensions

All Extensions 1A Extension Detail:

Define extensions For this plug-in in the Following section, Set tha properties
denoted by "*",

':ype filker bext

_s

»
Delete
£ Show Description & shew extension
_5] Open Schema —';] Open exbension
“\"J"' Find Declaration “x")' Find declaring e;
57 Find References
of Cut Chrl+3
=| Copy Chrl+C
Paste Chel4-Y
Rewvert
Save

* In the Extension Element Details dialog box, type the applicable
information.

* name field requires users to input the name of the functions group.

= config field requires users to provide the definition file described in
‘Describe global functions in xml’ on page 101.

* label field requires users to input a display name for the functions group
which will be displayed in BTT visual editors.

Extension Elenment Details

Sek the properties of "Function”, Required Fields are denoted by "+,

name*: ,‘ExtensnnFunctiuns

config®: Functiowdef/ExtensionFunctions, <l

label*; Extenson of Default Global Funckions

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

104 CHAPTER 8 = Global Function Extension = Extend global functions

Register for runtime

For the global functions of the server side, the implementation class should be
registered into the BTT global definition file (btt.xml). Then the BTT tools know
how to invoke a defined global function at runtime.

Search for globalFunctions in btt.xml, and then add a new entry for the
extended global function. The attribute id should be equal to the name registered
in the BTT plug-in extension, and the value should be the function implementation
class. The following snippet in bold is an example of function registering:

<kCol1l id="globalFunctions">
<field id="BTTStringFunctions" value="com.ibm.btt.utils.GlobalFunctions" />
<field id="BTTDateFunctions" value="com.ibm.btt.utils.GlobalFunctions" />
<field id="BTTNumberFunctions" value="com.ibm.btt.utils.GlobalFunctions" />
<field id="BTTCollectionFunctions"
value="com.ibm.btt.utils.GlobalFunctions" />
<field id="ExtensionFunctions"
value="com.ibm.btt.alphasample.drop3.globalfunction.ExtendFunctions" />
</kCol1>

For the client side, global functions are mapped into the related JavaScript object
automatically. The object name of the JavaScript implementation should be equal
to the name registered in the BTT plug-in extension.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 8 = Global Function Extension = Global Function Extension Sample 105

Global Function Extension Sample

An extension sample of the global function is provided to demonstrate how to
extend the BTT global functions. In this sample, two functions for the server side
and three functions for the client side are provided. The following is the list of the
extended functions:

= Server side:
= tolowerCase: convert a String into lowercase.
= toUpperCase: convert a String into uppercase
= Client side:
= tolowerCase: convert a String into lowercase
* isNull: check if a object has a value
= isNumber: check if a String can be converted into number

A runnable sample is also provided to show the result of applying the extended
global functions on both the client and server side.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

106 CHAPTER 8 = Global Function Extension = Global Function Extension Sample

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

107

CHAPTER 9

Generated JS File Name
Extension

When selecting an XUI file to generate a Dojo page, if the XUI file contains ECA
rule definitions, BTT will generate a Javascript file. The file is the Javascript
implementation for the defined ECA rule. By default, BTT will create the file with
the same name of the XUI file, just change suffix from .xuito .js. For example, if the
XUI file name is index.xui, the generated JavaScript file name will be index.js. BTT
provides an extendible point for convenience of Infrastructure developers to
change the default naming behavior. For example, Infrastructure developers can
add version information into the generated js file name.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

108 CHAPTER 9 = Generated]S File Name Extension = Extend generated]S file naming rule

Extend generated]S file naming rule

Implement naming rule

BTT provides three APIs for extending the default naming rule. Infrastructure
developers need to implement
com.ibm.btt.tools.xui.editor2.generatorGeneratelUIHandler interface or
extend the BTT default implementation class to implement the expected JS file
naming behavior. The following is description of the three APIs.

public wvcid cleanRuleFilesIfNecessary (IFolder folder, IRootModel model);

The following is a sample implementation.

public class ExtendGeneratelUIHandler extends GenerateUIHandler

public boolean generateRuleFile (IRootModel model) |
if (model.isRulelirty ()]
return true:;
else
return false:;
i

public 3tring getRuleFileName (IRootModel model)
SimplelbateFormat fwmt = new SimpleDateFormat | "yyMMAdHHmmn™) ;
roturn gotEUIFilcNoamceWithoutExt (model) 1 " " | fmt.format inew Datc()) 1 ".jo";
i
public void cleanBuleFilesIfNecessary(IFolder folder, IRootModel model,
IProgressMonitor monitor) throws CoreException{
String XuilName = getIUIFileNameWithoutExt (model)
IFile file = folder.getFile (xuiName+"™*.j=");
if (file != null){
file.delete (false, monitor);
i

Register implementation

The following describes how Infrastructure developers register the JS file naming
rule.

1 Open plugin.xml file of BTT extension plug-in project.
Click the Extensions tab.

2
3 Click Add.
4 In the field Extension Point Filter, type com.ibm.btt.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 9 = Generated JS File Name Extension = Extend generated JS file naming rule 109

5 Click com.ibm.btt.tools.xui.editor2.generator.

6 Click Finish.

7 Right click com.ibm.btt.tools.xui.editor2.generator then click

New > uiGenHandler.

o= P ~

2= Extensions Q¥
All Extensions +az — Extension Details

Define extensions For this plug-in in the Following section, Set the properties of the selected sxtension. Required fields are

denoted by "+,
filker bext
hfpe ilker bexd o
=:n= com,ibm. btk toals, common.globalFunctions add... Mame:
— Mew L4 lavoutizen
Delete I

rule
uiGenHandler
widgetGen

@ Show Description
19) Open Schema

57 Find Dedlaration

57 Find References
of Cut Chrl+3
= Copy Chrl+C
Paste Chrl+y

Rewerk
Save

Externalize Strings. ..

8 In Extension Element Details dialog box, type the applicable information.
* name field requires the user to input name of the naming rule.

= class field requires the user to input implementation class of extended
naming rule described in ‘Implement naming rule’ on page 108.

» priority field requires the user input the priority of this extension. If the
extension point is registered by multiple plug-ins, the higher priority
extension will be invoked by BTT. BTT default naming rule is registered as
low priority. So the customized JS file naming rule should be registered as
medium or high priority.

Extension Element Details

Set the properties of "uiGenHandler”. Required fields are dznoted by ™",

name*: Extend:UIGenHandler

class*: com.ibr. btk alphasample. generator . ExtendGener ate

priority®: E

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

1 10 CHAPTER 9 = Generated JS File Name Extension = Extend generated JS file naming rule

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 10

Naming Conventions
Extension

When creating an element with the BTT visual tooling, the element name or ID
starts with a default prefix. For example, when dragging a label widget onto canvas
using the BTT XUI editor, the ID of new created label will start with label by
default. Infrastructure developers can customize default BT'T naming conventions
to comply with their project naming specification, such as operations start with op,
formatters start with fmt. Furthermore, naming validators can also be customized to
validate if the created elements comply with the naming conventions.

Customized naming conventions can be applied to the following BTT elements:

Transaction Editor

= name of Transaction file

= ID of Processor

= ID of Operation

= ID of Operation step

= ID of Context

= ID of data, field, iColl, kColl, bColl
= ID of formatter

= ID of service

XUI Editor

= Name of XUI file

= ID of widget

= ID of ECA rule

Customized naming conventions can be applied in two levels:

* Project level: The naming conventions are applied to specific project.

» System level: The naming conventions are applied to all projects in workspace.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

111

1 1 2 CHAPTER 10 = Naming Conventions Extension = Extend naming conventions

Extend naming conventions

There are two ways of customizing BTT name conventions:

= Extend by registering new naming convention rule.

» Extend by registering new naming manager class.

Extend rule by registering new naming convention rule

Overview

BTT provides a naming convention rule for Infrastructure developers to customize
simple naming conventions without coding.

A rule is in the format of eTementRuleID=[prefix]{variable}[suffix].

* elementRulelD: is the rule ID of element supporting customized naming

conventions.

= prefix: can be 0 or n number of characters.

= variable: can be 0 or n number of predefined variables can be referenced by

naming convention rule.

= suffix: can be 0 or n number of characters.

Below is an example of naming convention rule:

FILE_TRANSACTION=newTransaction{file_count}.transaction

The following tables list BI'T elements, and their naming convention rule IDs.

Transaction Editor elements

Elements

ID

Transaction file name
Processor ID
Operation ID
Operation step ID
Context ID

Data ID

Field ID

Indexed Collection ID
Keyed Collection ID
Bean Collection ID
Formatter ID

Service ID

FILE_TRANSACTION
Processor
operation
opStep
context
data

field
iColl
kColl
bColl
fmtDef

service

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 10 = Naming Conventions Extension = Extend naming conventions

XUI Editor elements

Elements ID

XUI file name FILE_XUI

Widget ID ELEMENT _WIDGET
ECA rule ID ELEMENT ECA_RULE

Predefined variables

The following table lists predefined variables that can be referred to by the naming

convention rule:

Variable Description
file_count Returns count of files applied the rule in current project.
file name Returns the file name

widget_type
widget_count
rule_count

impl_class

oper_count

op_step_count

ctx_count

item_count

fmt_count

service_name

service_count

Returns widget type string of the widget in XUI editor.
Returns count of widgets applied the rule in current XUI file.
Returns the count of ECA rule applied in current XUI file.

Returns the implementation class name of a transaction element.
For example, an implement class name of an Operation object.

Returns the count of operations applied the rule in current
transaction file.

Returns the count of operation steps applied the rule in current
transaction file

Returns the count of Context in current transaction file.

Returns the count of elements with the same type in Data section
of current transaction file.

Returns the count of formatter in current transaction file.

Return the service name of a service object. The object can
be normal service or web service object.

For web service, will return port name
For normal service, will return implement class name

Return the count of service applied the rule in current transaction
file.

Create naming conversion rule

A rule can be applied either in system level or project level.

1 Customize naming convention rule at system level

a Creating new bundler file with extension properties in plug-in project, for
example: namingextension.properties.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

1 14 CHAPTER 10 = Naming Conventions Extension = Extend naming conventions

o a o

> a =

o2 IRE System Library [Javase-1.6]

Eib Plug-in Dependencies

= (% src

EE carn.ibr, btk alphazampls. drop3

EE com.ibrm.btt, alphasample. drop3. globalfunction
EE com.ibrm. btt, alphasample, genera:or

(= funchiondef
B META-TMF

""" 5_1 build, properties

""" plugin_zh.properties
""" plugin.properties

----- 7'} plugin.xml

Edit the naming convention rule in the file. The following is a example of
naming convention rule file:

namingextension. properties &3

FILE TRANSACTICH=extTrans{file_ count}.transaction
Processor={file name}

operation=ext{oper_count}op

op3ter=exti{op_ sStep count}opitep

Open plugin.xml.

Click the Extensions tab.

Click Add.

Click com.ibm.btt.tools.common.naming.

Click Finish.

Right-click com.ibm.btt.tools.common.naming then click New > rule.

In the Extension Element Details dialog box, type the applicable
information.

Bundle field requires the user to input the path of bundle file created in
step 1.

Note Do notinclude the extension name properties in the bundle attribute

Priority field requires the user input the priority of this extension. If the
extension point is registered by multiple plug-ins, the higher priority
extension will be invoked by BTT. The BTT default naming convention
rule is registered as low priority. The customized naming convention rule
should be registered as medium or high priority.

Extension Element Details
Set the propertizs of "rule”, Required fields are denated by "+,

Bundle®: wcam,iam,btt, alphasample. naming. namingzxtension
Priarity*: Middle IE'

2 Customize naming convention rule at project level

Add a properties file under the project root path with the file name
naming_convention.properties.

The file content is similar as the bundle file described in ‘Customize
naming convention rule at system level’ on page 113.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 10 = Naming Conventions Extension = Extend naming conventions 1 15

Add new Variable

Infrastructure developers can create new variable and use it in a naming
convention rule. The following steps describe how to create a new variable.

1 Implement the
com.ibm.btt.tools.common.naming.variable.IVariableGenerator’
interface. The following is description of IVariableGenerator:

public interface IVariableGenerator f{
AL
* Character case policy
*
public enum CharCase {
S
* Do not neeld to change firsc character's case
*
Nochange,
Rl
* Change first character's case to UppeEr Case
i
Uppertase,
S
* Change first character'=s case to lawer case
*
Lowsriass;
}

frw
* Zet generator's ID, default nawming mahager will call an IVariableGenerator
* if this generator's ID iz same as the variable id used in rule.</hr:>
* By default, default naming mansger will set this walue bhase on the ID attribute of
T extension point "com. ibm.btt.tools.common.naming - varisble gensrator”
@ id the ID of this generatoﬂ
*
public void secID(S3tring id):
frw
T et current generator's ID, default naming manager call this method to check if this generator can b2 used of a variable.
* the ID of this generator
*
public String getID():

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

1 16 CHAPTER 10 = Naming Conventions Extension = Extend naming conventions

ll."ﬂ‘ﬂ‘
* Zet first char case policy

* <BrNOTEZ:</E> default naming manager will apply this policy JUST when this wvarisble generator
* gappear at first position of a rule
* firstCharCase {Blink CharcCase}:
* wolx
* <liz<bzNoChange: means do not need to change first char's case
* <1i=<h>TpperCase</h>: rhange first char tn unper rase</ 11w
* <liz<brLowerCase: change first char to lower case</lix
* <fols
*
public void setFirstCharCase (String ZirstCharCase)
ll."ﬂ‘ﬂ‘

* Get first char case policy<bri>

* <BrNOTEZ:</E> default naming manager will apply this policy JUST when this wvarisble generator
* gappear at first position of a rule

*

* wolx

* <lizNoChange: means do not need to change first char's case</lix

* <lizUpperCase: change first char to upper case</lix

* <lirLowerCase: change first char to lower case</lix

* <fols

w4

public CharCase getFirstCharCasel():

ll."ﬂ‘t
* Default naming manager will call this method to conwvert & wvarsiable that defined in rule.
* context {@link INamingContext}
*
* ExpectedInfoNotFoundException
*

public 3tring getWValue [INamingContext context) throws ExpectedIafoNotFoundException:

,u"’**
* Default naming manager will call the getWalue method on each IVarisbhleGenerator, and than
* oall this method on each IVariableGenerator.-<br:
* Can use this method to generator variskble that can just be generated only all other warishle
* haz heen generated (for exsmple: the file count variable)
* context {@link INamingContext}
* rule rule string, each wvarisble in this rule has been converted with relewvant
* IVarisbleGenerator's getValue method.
* new whole rule neme.
* ExpectedInfoNotFoundException
*

public 3tring postGenerate [(INamingContext context, 3tring rule) throws ExpectedInfoNotFoundException:

2 Register the variable generator

a Right click extension point com.ibm.btt.tools.common.naming then
click New > variable_generator.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 10 = Naming Conventions Extension = Extend naming conventions 1 17

All Extensions +az — Extension Details

Define extensions For this plug-in in the Folowing section, Set the properties of the selected e:
denoted by "+,

g

tyne filter kexk e}

[F-4= cam.ibrm.btt. tools. common, globa Functions Marne:
+-5= com,ibm, btk kools, xui.editor2, generator

ibm, btk kaols, — "
:Dm.ibm.btt.alphasample.namir manager

- sample {variable_generator)

Delete

en extension print schems

@ Show Description

nd declaring exkension point
_5] Upen schema

57 Find Dedlaration

57 Find References
of Cut Chrl+3
= Copy Chrl+C
Paste Chrl+y

Rewerk
Save

Externalize Strings. ..

b In the Extension Element Details, type the applicable information.

i ID: The ID will be used in naming convention rule. For example, the
new variable's ID is file_count.

Generator: The implementation class of variable generator.

FirstChar: Indicates if need to change first character and how to
change the first character.

Extension Element Details

Set the properties of "variable_generator”, Required Sields are
denoked by ",

ID*: sanple
Generator®s com.ibm. btk alphasarmple. naming. Sampey:
FirstChar: pperCase IE'

Extend by registering new naming manager class

Infrastructure developers can have the full capability of naming BTT elements at
the time they are created. On the other hand, Infrastructure developers have to
implement from scratch and cannot leverage existing BT'T implementation in
naming. The following steps describes how to implement and register a new
naming manger class.

Implement naming manager

BTT provides APIs for extending BTT naming convention from scratch.
Infrastructure developers need to implement

com.ibm.btt.tools.common.naming. INamingManager interface. The following
is description of INamingManager:

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

1 18 CHAPTER 10 = Naming Conventions Extension = Extend naming conventions

public interface INamingManager

/wx

* Check point ID used when creating new XUI file

W
public final static String KEY 0T FILE = "FILE_XUI";
/ﬁ'ﬁ

* Check point ID used when creating new Transaction file
=/
public final static String KEY TRANSACTION FILE = "FILE TRAMSACTIONT;
Ja
* Check point ID used when creating new widget in a ZUI file
W
public final static String KEY WIDGET = "ELEMENT WIDGET";
2L
* Check point ID used when creating new ECAL rule in & UL file
=/
public final static String KEY ECA RULE = "ELENENT ECL RULET:

Jun

* get INamingManager instance

* project which project this INawingManager will working for

*

= <lixif has project level naming convention rule, return naming manager with project level nawing convention rule</lis
= <lirelse if just find custowised systew level nowing convention rule, return nowing manager for this level</1lis
w <lizocherwize, recurn default naming convention mwanager</lix

=
public INamingManager getInstance (IProject project);

L]

* Invoke from file creation wizard in order to get predefined file name.

o type Wizard type for file creation, such as transaction wizard or UI wizard.

o CONCEXT FUntime Contextc {@link INamingConcext)

w file name after convention, return hull if no naming convention applied.

=

public 3tring getConventionId(3tring type, INamingContext context) throws HandlerNotFoundException, ExpectedInfoNotFoundException;
L]

* Validate element id to see if it follows naming convention or not.

o type Wizard type for file creation, such as transaction wizard or UI wizard.

W conventionId the convention ID need to be validated

* context runtime context {@link INamingContext}

* {Blink NamingWalidateResult}

* HandlerNotFoundException

= ExpectedInfoNotFoundException

=/

public NamingValidateResult walidateConventionId(String type, String conventionld, INamingContext context) throws HandlerMNotFoundException,

Register naming manager

Open plugin.xml file of BTT extension plug-in project
Click the Extensions tab.

Click Add.

In the field Extension Point Filter, type com.ibm.btt.
Click com.ibm.btt.tools.common.naming.

Click Finish.

Right click com.ibm.btt.tools.common.naming then click New > manager.

0 N & U A W N =

In the Extension Element Details dialog box, type the applicable
information.

* Class field requires the user to input implementation class of naming
manager described previously.

= Priority field requires the user input the priority of this extension. If the
extension point is registered by multiple plug-ins, the higher priority
extension will be invoked by BTT. BTT default naming manager is
registered as low priority. So the customized naming manager should be
registered as medium or high priority.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 10 = Naming Conventions Extension = Extend naming conventions 1 19

Extension Element Details

Set the properties of "manager”. Required Fields are denoted by

Class*; com.ibm.btt, alphasample.naming, Sampleta

Priority®: Middle

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

120 CHAPTER 10 = Naming Conventions Extension = Extend naming conventions

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

121

CHAPTER 11

Multi-project Support in
Extension

For a banking customer, it possibly has multiple channel applications, such as teller
banking, internet private banking, corporate banking and etc. These applications
may be required to share some common business logic or resources such as
operations and flows, NLS files or image files. At development time, the
applications are organized as multiple projects in RAD. BTT tooling supports
referring to resources in a project from other projects. For example, developers can
choose NLS definition from one project for a widget of another project. The BTT
multi-project feature improves the maintainability of the application code,
flexibility of project management and avoids code redundancy. Also it improves
the runtime flexibility by hot deployment capability. For example, business logic in
shared sub-flows or web resources like images or the CSS has been changed,
administrators only need to re-deploy the shared EAR, the base business-specific
application EAR does not need to be restarted.

The types of multiple projects:

= Global Web Project: the project contains web resources which are shared
hierarchically with other global, common and local projects. In Global web
projects, there are the following web resources types

= NLS

= CSS

= Static Lists (for combos and selection)

= Images

* Dojo JS(include Dojo base, BTT Dojo and application extended widgets)

= Global Java Project: the project contains components which are shared
hierarchically with other global, common and local projects. In Global java
projects, there are the following web resources types

= BTT Global Definitions XML (btt.xml, context, data, type, service etc.)

* Common Java project: the project contains self-defined operations generated
by WS import wizard. These operations are then reused by other common and
local projects. Typical resources contained in a common project are:

» Self-defined operation

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

122 CHAPTER 11 = Multi-project Support in Extension =

= Self-defined flow processor without views

= Common Web Project: the project contains sub page flows which are shared
by local projects. The common web project are self-contained that means it has
self-defined flows and needs to initialize btt.xml in the BTT startup servlet. In
Global java projects, there are the following web resources types

= Self-defined sub-flow with views

* Local project: the local project is application web project and does not share
any component with other projects. It refers shared components from global
and common projects. Local project has business-specific logic implemented by
page flow and operations that cannot be shared. As best practice, in local
projects, the data/type is not defined, it uses the data defined in the global java
project.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 11 = Multi-project Support in Extension = Handle project prefix 1 23

Handle project prefix

In the BTT tooling, the following resources can be chosen from another project:
NLS definition

Image file,

Context definition

Data name in a context,

CSS file

List file

Flow

0 N O U b W N =

Operation

At time of generating JSP from XUI, the value of a widget attribute needs to be
generated into runtime value properly.

The following mapping rules handle multi-project for widget attributes specially:
* remoteNLSPathRule: which handles NLS String for multi-project.

= changePathRule: which handles List file for multi-project.

= remotePathRule: which handles Operation for multi-project

= checkDataNameRule: which handles Data name for multi-project

= changePathRule: which handles Image file for multi-project

When a resource is selected from another project, BIT will add a project prefix to
the resource reference information. In this case, resource reference information will
be in the format of [project prefix]:[resource reference identity].In
order to avoid large modification when a common or global project is renamed,
BTT uses a project map key instead of a project name as a project prefix.

The common or global projects information is defined in the BTT configuration file
as remoteProjectURL kCo11 of the local project. For each entry, the 1d field is the
project name, the description field is the project map key and the value field is
the access information at runtime. The following is a sample of the map key
definition:

<kColl id="remoteProjectTRL":>
<field id=""{saiidabasaly=T=id "
value="http://localhost: 5080/ CommonWehPrcject/ ™
description="CommonWebProject™ />
<field id="globalProject™
value="http://localhost:5080/GLobalWehPrcject/ ™
description="GlokalProject™ />
</kColl»

For an extended widget, if its attribute refers to a resource in another project, the
widget implementation needs to handle the project prefix to locate the resource.
BTT provides two APIs for Technical developers to handle the project prefix.

= JProject FilePathUtil.getProjecByResourceID(String resourcelD,
IProject activeProject)

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

1 24 CHAPTER 11 = Multi-project Support in Extension = Handle project prefix

The API returns the project in which the resource is located according to the
resourcelD. If resourcelID does not contain a project prefix, the activeProject
will be returned. If the project map key is not defined in the BTT configuration file,
an I17egalArgumentException exception will be thrown.

= String FilePathUtil.getValueByResourceID(String resourcelD)
The API returns the resource without project prefix.

The following sample code demonstrates how to retrieve an icon file from a global
project.

try{

IProject imageProject =
FilePathUtil.getProjecByResourcelID(imagelLocation,
EditorUtils.getActiveProject());
String imageRelativelocation = FilePathUtil.getValueByResourcelD(imagelLocation);
IFile imageFile = imageProject.getFile(imageRelativelocation);

}
catch(ITlegalArgumentException ie){

// handle map key is not defined exception

The following sample code demonstrates how to retrieve a NLS definition from a
global project.

try{
IProject selectedProject = FilePathUtil.getProjecByResourcelID(nlsLocation,
EditorUtils.getActiveProject());
String nlsTextField = getValueByResourcelD(nlslLocation);
String nlsValue = NLSUtils.getPropertiesValue(nlsTextField,selectedProject);
catch(IllegalArgumentException je){
// handle map key is not defined exception
}

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

125

CHAPTER 12

Pagination Extension

If a grid contains massive data, it will be an expensive operation to retrieve all data
at once. Because the operation will consume a large amount of memory and
network bandwidth to store and transfer the data. BTT provides pagination support
on both the browser side and the server side. Large amounts of data can be
separated into multiple parts, and each part can be retrieved at different time.

If the isPageab]le attribute of a grid widget is selected as true, the BTT pagination
function will be enabled, and grid attributes for pagination are required for
definition.

At runtime, when one of pagination widgets is selected in a browser, an Ajax
pagination request will be sent to the server side. And then the BTT server
operation will retrieve the data according to the pagination parameter and send it
back to the browser.

On the server side, BTT invokes two server operations to handle a pagination
request:

= Technical pagination operation

Technical pagination operation is implemented by the BTT product or
Technical application developers. The operation is responsible for:

» Retrieving and handling pagination parameters from request.
* Chaining business operation context to processor context.
* Invoking business pagination operation
* Mapping data between business operation context and processor context
* Handling exception
= Business pagination operation

Business pagination operation is implemented by Functional application
developers. The operation retrieves business data according to the pagination
parameters.

The following diagram demonstrates the relationship between the technical
pagination operation and business pagination operation.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

126 CHAPTER 12 - Pagination Extension =

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 12 = Pagination Extension = Extend technical pagination operation

Extend technical pagination operation

The technical pagination operation is responsible for handling pagination
parameters, such as rows per page and total page number. BTT provides a default
technical pagination operation to handle the parameters. The application may have
a requirement to handle application specific pagination behavior. Technical
developers possibly need to implement a customized technical pagination
operation.

The customized technical pagination operation needs to extend the class
com.ibm.btt.cs.ajax.AbstractPaginationOp. The following diagram shows
class hierarchy of technical pagination operation.

i ——
|

1 PaginationOp Extension

The customized technical pagination operation needs to override the following
methods:

1 beforekxecutionBiz0p

,u"’**
* The logic will be implemented on the project-lewvel to get some regquired parameters
* from the reguest datas and put the paraweter into the hiz operation context
and zhain the biz operation context into parent (processor) contexXt

*
*
* this is occurred before the biz operation instanced.
*
*

DEEException
*

ahstract void beforeExecuteBizOp() throws DSEException;

2 handleBizOpInputMapping

,u"’**
* the alpha dewveloper who create a new Technical operation can extends this method
* for adding some data wapping from parest/processor context to the hiz operation
4 CONTEXT.
* DEEException
*

abstract woid handleBizOpInputMapping() throws DSEException;

3 handleBiz0pOutputMapping

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

127

128 CHAPTER 12 - Pagination Extension = Extend technical pagination operation

,u"’**
* the alpha developer who create a new Technical operation can extends this method

* for adding some data mwapping from biz operation context into parent/processor context.
*

* this method is called after the biz operation instanced.
*

* DEEException
*
ahstract void handleBizOpOutputMapping() throws DIEException:

4 afterExecuteBizOp

,u"’**
* This logic wll be implemented on the project lewvel to handle the result
* Zrom the biasiness opzration and put the necessary data into the operation
* rcontext if necessary.
*
* DE3ZException
w

ahstract void afterExecuteBizOp() throws D3EExceptiorn;

5 handleException
,u"’**
* Wrken an exception occurred in the operation executing process, how
* tc handle the exception. maybe update the errMsg field or just throw

tlre exception out

e
Exception

ahstract void handleException(Exception =) throws Exception ;

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 12 = Pagination Extension = Pagination parameters 129

Pagination parameters

On the server side, when the BTT request handler receives a pagination request
from the browser, it will parse the pagination parameters from the request and store
the parameters in the operation context of the technical pagination operation. The
technical pagination operation can use the parameters to do pagination correctly.
Technical pagination operation context has three data parts:

= tableProperties

Contains the pagination attributes of the pagination table.

Field name Description

tableld The id of table defined in XUI

dataName The dataName attribute defined in table
dataNameForlList dataNameForList attribute defined in table
rowsPerPage rowsPerPage attribute defined in table

operationNameForPagination operationNameForPagination attribute

defined in table
directPagination directPagination attribute defined in table
tableColumniIDs dataName list of each column in table. Each

dataName is separated by comma, for
example {namel, name2, name3}

= pageRequest

Contains the control parameters of pagination

Field name Description

pageEvent The event that triggers pagination request. The possible value can
be ‘initial’, ‘next’, ‘prev’, ‘page’.

pageNumber Page number to be requested
sortData

customData The reserved field for extension usage

= pageReply

Contains the data and control parameters after pagination request is processed.

Field name Description

totalRowNumber The total row number of data
enableNext Will Next icon in client be enabled
enablePrevious Will Previous icon in client be enabled
errMsg Error message to be shown on client

when exception occurs

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

130 CHAPTER 12 = Pagination Extension = Pagination parameters

Field name Description
items Business data is retrieved
customData The reserved field for extension usage

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 12 = Pagination Extension = Register customized technical pagination operation 13 1

Register customized technical pagination operation

After a customized technical pagination operation is implemented, technical
developers need to register the operation so Functional developers can choose the
operation in the XUI editor.

The following steps describe how to add a new technical pagination operation:
1 Open btt.xml, and click the Settings tab.

2 Right click directPaginationType or indirectPaginationtype then click
Add SubField > Field Field

F| defeult Add Before »
\E| defe
[E] Extension Add After 3

K| indrectFaginal Add SubField » RS

B defeult Delete File Field

Genetic Field

=

Eroup

3 Inthe Detail Information area type:
Id: the unique Id of the operation value: the class of the operation.
description: the description of the operation.

4 Click Save.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

132 CHAPTER 12 = Pagination Extension = Register customized technical pagination operation

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 13

Client State Extension

In a banking application project, there are some common usage scenarios to
execute the client side operation from flow. Especially, for a web channel

application, BTT supports the capability to interact with the Ul feedback from the

thin client (browser) in AJAX style.

For example in a BTT web channel application, sometimes we need:

= To pop-up a window dialog for implicit flow requirement to:

Close flow

Retry or close flow

Display a warning message and a button to continue
Go to the previous page

Go to the previous page or close flow

= Super-user approval

= Devices control

= Call client side applications such as TP16 or TP32 existing transaction.

For these requirements, BTT has provided a kind of abstract state called client

state. Meanwhile, there is a default client state implementation for the model pop-

up dialog in the BTT product. A more detailed introduction about the client state
can be found in the product document.

For customer specific scenarios, alpha developers could implement their
customized client state such as device control or override. To implement a
customized client state, Infrastructure developers can follow the four steps
described below.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

133

134 CHAPTER 13 = Client State Extension = Step 1: Extend a Client State

Step 1: Extend a Client State

Client state is an abstract state class which defines the general behaviors for client
interaction. In the BTT product, there is a default implementation of the client state
called PopupPageClientState. Alpha developers always need to customize the
client state to fulfill the usage scenarios.

Implement state class

The BTT product has provided an abstract class named
com.ibm.btt.automaton.ext.ClientState to facilitate the alpha extension.
This class is extended from the class of page state
com.ibm.btt.automaton.html.DSEHtmIState. Alpha developers can focus
more on the logics of client interaction and pay less attention on common state
methods like initializeFrom

In the extension usage scenario, there are four methods may be commonly
extended by alpha developers in the application:

= protected abstract String getCommand():
This method returns the command of behavior which will be brought to the
client side. For instance, a extended Client State used for printing forms may
return a command like fromPrint. The JavaScript handlers registered for
command fromPrint will be invoked. It is the required method to be
implemented.

@override
protected String getCommand ()
Ohject obj;
String command = "";
try {
obj = getFrocessor().getContext () .getValuelt ("clientoperation™);
if (obj !'= null)
command = obj.toString() s
} else {
if (lcgger.doError())
logger.error ("Client command is null.");
}
} catch (DSECkjectNotFoundException e)
if (logger.doError())
logger.error ("Errcr when reading client ccmmand : ", e);
}

return command;

= protected void afterFirstExecute():
Client State will be executed twice during the flow execution. Once is when it is
activated and gives a response to a client request; the second time when it
handles a client response after the execution of the client logic and moves to
the next state of the flow. Alpha developers could add extra logic for the server
side in this method.

@override
protected void afterFirstExecute() throws DSEProcessorException,
DSEInvalidArgumentException {
super.afterFirstExecute();

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 13 - Client State Extension = Step 1: Extend a Client State 135

= protected void addRequiredDataToContext(Context context):
This method can be overridden to add or remove data which may be brought
to client side. If you need to render or pop-up a page, you should set the value
for the reply page as shown in the code snippet below.

@override
protected void addRequiredDataToContext (Context context)
try |
getProcessor () .getContext () .setValuelAt (HtmlConstants . REPLYPRAGE, getTypeIdInfo());
} catch (Exception e)
if (logger.doError())
logger.error ("Error when setting replyPage in popup page state: ", e);

Otherwise, if you are going to implement your own logic instead of page
rendering, you can just leverage the implementation of the super class like the
code snippet below.

@overrids
protected void addRequiredDataToContext (Context context)
super.addRequiredDataToCcntext (context) ;

}

= public String generateClientResponse():
This method is used to convert the server data to JSON message and send them
back to the client side. In the implementation of the class
com.ibm.btt.automaton.ext.ClientState, all the flow context data will be
formatted into JSON as response data. Alpha developers could override this
method to filter the response data.
@override
public String generateClientResponse () throws DSEInvalidReguestException |
String res = super.generateClientResponse();
try {
J50N0bject jo = J50NCbject.parse(res);
Jo.pat ("XYZ", "xyz"):
res = jo.toString() ;
} catch (ICException e)
e.printStackTrace();

}

return res;

Register the implementation class into btt.xml

To make the extended state class available during runtime, alpha developers
should register it into the btt.xml of target application. You need to open the
btt.xml in your application project, and move to the processor tab. Then, you can
register your extended state class in the class table of processors. See the following
screen shot.

Detailed Information

id testClientState
value com.ibm.btt.test.cs.TestClientState Browse... |
description

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

136 CHAPTER 13 = Client State Extension = Step 2: Enable the extended State in Transaction Editor

Step 2: Enable the extended State in Transaction

Editor

For more information about how to enable an extended state available in the
Transaction Editor, see ‘Process Editor Extension’ on page 79. Also, this chapter
explores how to enable the extended client state in the Transaction Editor step by
step.

Create configuration file for the extended client state

Just like the extension steps for a state, alpha developers should define it with an
xml file. To define a state for the palette, there are three kinds of tags will be used:

= appearance. This tag is used to indicate the appearance of the state shown in
the palette. For example, we can control the font style with the attribute font.

= properties. This tag is used to group the property tags.

= property. This tag is used to describe the property for Transaction Editor
about how to display, what is the default value or extra generation rule.

The code snippet below shows a sample of the configuration file for extended client
state:

11 version="1.0" encoding="UTF-8"2>
e xmlns="http://btt. ibm.com/StateSchema” xmlns:xsi="attp://www.w3.org/2001/XMLSchema-instance”
i:schemalocation="http://btt.ibm.com/Stateschema StateSchema.xsd ">

nce backgroundColor="154,13¢,222" font="Arial-reqular-10" fontColor="0,0,0" gradient="true"” />

name="id" defaultValue="" hidden="true" required="false" />
name="Page" defaultValue="" hidden="false" displayName="Page" required="true"
iption="rPage file path" editRule="PageSelectionBeta" />

Register extended client state into the palette

To make sure the extended state could be chosen from the palette and dragged into
flow canvas, alpha developers also need to register it in the Eclipse extension point
of palette. For that, you can follow the steps below.

1 Open the plugin.xml in your plug-in project.
Click the Extensions tab.
Click Add.

In Extension Point Filter field, type com.ibm.btt.

u A W N

Click com.ibm.btt.tools.transaction.dominate.palette.

Extension Point Selection

Create a new BTT Transaction Editor Palette extension.

Extension Points | Extension Wizards

Extension Point filter: com.ibm.btt.tools.transaction.do

=Jcom.ibm.btt.tools transaction.dominate.editorRules

—u§com.ibm.btt.tooIs.transaction.dominate.palette§

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 13 - Client State Extension = Step 2: Enable the extended State in Transaction Editor 137

6 Click Finish.

7 Right click com.ibm.btt.tools.transaction.dominate.palette then click
New > state to create the applicable object.

4 = com.ibm.btt.tools.transaction.dominate.palette Add...
\w TestClientState (state)

. . Remove
> «= ora.eclipse.ui.commands

Click Finish.
In Extension Element Details dialog box, type the applicable information.

Note For the attribute config, alpha developers should browse the workspace
to choose the definition file we defined already. For the attribute
stateParser, you can just choose PageStateParser provided by BTT
product for your extended Client State.

Extension Element Details

Set the properties of "state". Required fields are denoted by "*".

name*: TestClientState

label*: TestClientState

smalllcon*: icons/infol6.PNG | Browse... |
largelcon*: icons/info32.PNG | Browse... |
config*: palette/TestClientState.xml |Browse...|
description:

stateParser: com.ibm.btt.tools.transaction.extend.parser.PageStateParser |Browse...|

You can now use the extended state in the Transaction Editor. The screen shot
below shows the result view. You can find more detailed introduction about this
part in the ‘Process Editor Extension’ on page 79.

p

=« Palette I
e~
L State)

s TestClientState

> Initial

[0 Final

Page

i Operation

=% SubFlow

i Condition

PopupPageState

Create configuration file for mapping rules

In most scenarios, alpha developers need to inject some extra generation rules into
the Transaction Editor. To fulfill this requirement, alpha developers need to create
a xml file in the plug-in project to define the mapping rules.

There are two kinds of tags commonly used in rules definition:

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

138 CHAPTER 13 = Client State Extension = Step 2: Enable the extended State in Transaction Editor

tag-mapping. This tag is used to indicate the conversion rules between the tags
used in transaction file (the value of attribute from) and the ones in the
generated xml file (the value of attribute t0).

property-mapping. This tag is used to indicate the conversion rule between
the attributes in transaction file (the value of attribute from) and the ones in the
generated xml file (the value of attribute t0).

11 version="1.0" encoding="UTF-8"2>
gs xmlns="http://btt.ibm.com/MappingsSchema™ xmlns:xsi="http://www.w3.org/2001/XMLSchema—instance"

si:schemalocation="http://btt.ibm.com/MappingsSchema MappingsSchema.xsd ">

7 from="TestClientsState"” to="testClientState">
g from="id" to="id" rule="PageIdRule" />

g from="Page" to="typeIdInfo" rule="PageRule"/>

Alpha developers could assign a more complex property generation rule with the
attribute rule, which references to some program logic. The BTT product has
provided several rule implementations and developers could also implement and
register their own property generation rules. You can find more detailed
information about his topic in ‘Process Editor Extension’ on page 79

Register mapping rules

To make the mapping rules work in the Transaction Editor, alpha developers
should register it with an Eclipse plug-in extension following the steps below:

1

u o W N

Open the plugin.xml of your plug-in project.

Click the Extension tab

Click Add.

In Extension Point Filter field, type com.ibm.btt.

Click com.ibm.btt.tools.transaction.editor.generator.

= New Extension E@Iﬂ

Extension Point Selection

Select an extension point from those available in the list.

Extension Points | Extension Wizards

Extension Point filter: com.ibm.btt.tools.transaction.editor.generatcr]

| =l com.ibm.btt.tools.transaction.editor.generator |

Click Finish.

Right click com.ibm.btt.tools.transaction.editor.generator then click
New > mapping.

4 o= com.ibm.btt.tools.transaction.editor.generator | Add
config/mapping.xml (mapping) =
. . . emove
> 2= com.ibm.btt.tools.transaction.dominate.palette

In Extension Element Details dialog, type the applicable information.

= file: browse to locate the xml file defined above.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 13 - Client State Extension = Step 2: Enable the extended State in Transaction Editor 139

= target: the name of currently used transaction generator should be input as
its value.

Extension Element Details

Set the properties of "mapping". Required fields are denoted by "*".

file*: config/mapping.xml | Browse... |
target®: Default Generator
description:

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

140 CHAPTER 13 - Client State Extension = Step 3: Extend navigation engine to register command handler

Step 3: Extend navigation engine to register
command handler

After the client state is activated in the server side, a command will be added into
the response data and sent back to the client side. Then the navigation engine will
invoke different target command handlers to handle the related command in the
reply data.

In order to correctly respond to the command and invoke the associated client
operation logic, alpha developers should extend the navigation engine of the BTT
product and register their own command handlers.

Extend the navigation engine to register a command handler

The navigation engine provided by BTT product is located in the file
NavagationEngine js. In this JS library file there is a function named postCreate,
which will be invoked after the engine is created and all the widgets loaded for the
first time. The extended command should be registered in this method as the code
snippet below.

postCreate : function()
this.registerCommand("render_page", dojo.hitch(this, this.renderPageHandler));
this.registerCommand ("popup page"”, dojo.hitch(this, this.popupPageHandlzr));
this.registerCommand ("redirect”, dojo.hitch(this, this.redirectPage));

}!

Alpha developers should extend the NavigationEngine of the product code, and
then override the function postCreate

dojo.provide ("test.ExtendedNavigationEngine™) ;
dojo.rzguire ("com.ibm.btt.event.NavigationEngine™) ;

dojo.dzclare ("test.ExtendedNavigationEngine®”, [com.ibm.btt.event.NavigationEngine],
postCreate : function()
this.inherited (arguments);
'/ register command handlers here

Alpha developers should then define their command handlers which will be
invoked by the navigation engine. The following code shows a sample of device
control, which will invoke the printer to print current form. You can find more
sample handlers in the sample project.

printFormHandler : function(resp)

console.log("response form",resp);
lientStateResp = dojo.fromdson(resp.data);

window.print();

var oldpars = this._getBTTHiddenData(),'
var params = this.clientStateResp;
console.log("new dse", params);
params.dse nextEventName = "ok";
params.dse pageld = oldpars.dse pageld;
this. submitData (params);

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 13 = Client State Extension = Step 3: Extend navigation engine to register command handler 141

Finally, alpha developers should register the handlers defined above in the
extended navigation engine. This is the same as the code style of the navigation
engine of the BTT product.

postCreate : function() {
this.inherited (arguments) ;
this.registerCommand ("cmd print form", dojo.hitch(this, this.printFormHandler)):;
console.log ("ExtendedNavigationEngine created."™);

}!

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

142 CHAPTER 13 - Client State Extension = Step 4: Add the reference of new navigation engine to template

Step 4: Add the reference of new navigation engine

to template

Alpha developers should modify the JS template of their BTT project. The
following code snippet should be added to the end of the script section. After that,
the XUI files should be generated again with the new template to make sure the
extended engine and command handler would take effect at runtime.

dojo.require ("dojox.data.QueryReadStore") ;
dojo.require ("test.ExtendedNavigationEngine™);
var BTT ECA MONITOR = new com.ibm.btt.event.BaseMonitor () ;|
if (!window.engine) {
window.engine = new test.ExtendedNavigationEngine();
engine.setMonitor (new com.ibm.btt.event.BaseMonitor()):

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

143

CHAPTER 14

Reference Sample Topics

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

144 CHAPTER 14 = Reference Sample Topics = How to extend a global function invoked in ECA action

How to extend a global function invoked in ECA
action

For the XUI editor, global functions could be invoked both in the Expression Panel
and the Action Panel. In this reference sample, Infrastructure developers will be
guided to extend a global function used in the ECA Action. The purpose of this
function is to disable a widget in a browser.

Define global function in XML

1 Create a new plug-in project or use the already existing one (see ‘Plug-in
Project Setup’ on page 14).

2 Create a new folder under the project; for example, name it as globalFunctions.

3 Create an xml file under the folder; for example, name it as
ExtendedGlobalFunction.xml.

4 =¥ com.ibm.btt.tools.extension.globalfunctior
» = JRE System Library [JavaSE-1.6]
- 2 Plug-in Dependencies
2 src
4 (= globalFunctions
¥ ExtendedGlobalFunctions.xml

4 Edit the file to define a global function. Notice that, the attribute
showInAction should be set to true to indicate this function will be available
in the Action panel of XUI ECA editor.

¥ ExtendedGlobalFunctions.xml
<?2xml wersion="1.0" encoding="UTF-8"2>
b st xmls="http://btt.imb.com/FunctionslistSchema”
"http://www. w3, org/2001/XMLSchema—instance” xsi:schemalocation="http://btt.ibm.com/Functicnslistse

name="disableWidget" returnType="" description="Disable widget" EhowInkction="true"

r name="widgetId" description="Widget ID" type="String" />
name="flag" description="Flag tc indicate disable widget or not" type="Boolean" />

Register global function definition as Eclipse extension
Open the plugin.xml.

Click the Extension tab.

Click Add.

A W N =

In Extension Point Filter field, type global.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 14 = Reference Sample Topics = How to extend a global function invoked in ECA action 145

Extension Point Selection

D
Create a new BTT Global Functions extension. ;

Extension Points | Extension Wizardsl

Extension Point filter: global

‘ =l com.ibm.btt.tools.common.globalFunctions

=l org.eclipse.gmf.runtime.comman.ui.services.action.globalActionHa

5 Click Finish.

6 In Extension Element Details dialog, type the applicable information.

= name. This value is the identifier of this extension.

config. Click Browse to find the configuration file defined in previous
steps.

label. This value will be shown as the name of global functions group.

Extension Element Details

Set the properties of "Function". Required fields are denoted by "*".

name*: | [Si (
config*: functions/ExtendedGlobalFunctions.xml EBrowse...

label*: Extended Global Functions

Implement JavaScript for global function

For global functions running in the browser side, Infrastructure developers should

prepare a piece of JavaScript snippet. In this sample, the implementation code is
used to disable a widget in a dojo page.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

146 CHAPTER 14 = Reference Sample Topics = How to extend a global function invoked in ECA action

ExtendedGlobalFunctions.js &3

dojo.provide ("com.ibm.btt.extension.globalfunction.ExtendedGlobalFunctions");

(functien()
var egf = {};
egf.disableWidget = functien(widgetId, flag)
if (flag == undefined){
flag = true;
var widget = dijit.byId(widgetId):;
if (widget.getDescendants != undefined)

wvar widgets =
for (var i = 0;

if (widgets[i]
if (widgets

widget.getDescendants () ;
i « widgets.length; i++)

iisabled != undefined)
.invalid != undefinedi

widgets[i].set("invalid", flag):
} else {
widgets[i].set("disabled", flagi:
H
}
}
} else if (widget.disabled != undefined)

if (widget.invalid

= undefined)

widget.set ("invalid", flag);

} else {

widgell: .set("disabled",

}

I else {

flaqg);

console.error ("Widget "

+ widgetId

+ " neither is a container widget nor have a disabled property, can not disabe this widget.™):

I

window.ExtendedGlobalFuncticns = egf:

B O

Enable XUI editor aware of this global function

Here are two steps for Infrastructure developers to make the XUI editor aware of
this global function:

1

Put the JavaScript code under the WebContent folder of the runtime project.
For this sample, the folder structure is like the following screen shot.

a = WebContent
o=
= img
a=is
4 = com
4 = ibm
4 = btt
- = dijit
» = event
4 (= extension
4 (= globa

Modify the temple of XUI editor to make sure the implementation code of
global function will be referenced by the generated JSP page.

dojo.reqguire ("dojox.datz.QueryReadStore") ;

dojo.reguire ("com.ibm.btt.extension.globalfunction.ExtendedGlobalFunctions") ;

.y
-

var 3TT ECA MONITOR = new com.ibm.btt.event.ConsoleMcnitor():

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 14 = Reference Sample Topics = How to extend a global function to manipulate collection data 147

How to extend a global function to manipulate
collection data

When composing a flow, sometimes it is necessary to manipulate the collection
data contained in an indexed collection. For example, customers may have several
accounts and each account has a balance. The account summary view need to
present the sum of the balances of all accounts. In this topic, Infrastructure
developers will be guided to fulfill this job by extending a global function.

Define global function in XML

1 Create a new plug-in project or use the already existing one.

2 Create a new folder under the project; for example, name it as
CEGlobalFunctions.

3 Create an xml file under the folder; for example, name it as
BTTWildCardFunctions.xml.

L3 Project Explorer 2 - [-j A |
4 ‘!;g'é com.ibm.btt.test cegfuncs (2011 appe
=4\ JRE System Library [/avaSE-16
=4 Plug-in Dependencies
H src

4 LﬂCE chatFommt
4% BTTWildCardFunctions.xm
=% META-IN

lo4 build.propertes 1912 12-3-2°

g pluginxml 191

4 Define the signature of global function.

Note The type of the input parameter should be set as Array to enable the
property editor used for collection data manipulation.

. BTTWildCardFunctionsxml (2

raType="Numbar"

balance" isClient="false":

Register global function definition
Open plugin.xml.

Click the Extension tab.
Click Add.

A W N =

In Extension Point Filter field, type global.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

148 CHAPTER 14 = Reference Sample Topics = How to extend a global function to manipulate collection data

Extension Point Selection

Create a new BTT Global Functions extension.

Extension Points | Extension Wizardsl

Extension Point filter: global

=l com.ibm.btt.tools.common.globalFunctions

=lorg.eclipse.gmf.runtime.commen.ui.services.action.globalActionHa

5 Click Finish.
6 In Extension Element Details dialog, type the applicable information.
= npame. This value is the identifier of this extension.

= config. Click Browse to find the configuration file defined in previous
steps.

* label. This value will be shown as the name of global functions group.

Extension Element Details

Set the properties of "Function”. Required fields are denoted by "*",

name® BTTWildCardFunctions

config®: CEGlobalFunctions/BTTWildCardFunctions.xml Browse...
label*: BTTWildCardFunctions

Implement the function logic to calculate the sum of account
balance

To calculate the sum of the account balances, the global function takes a value
array of account balances as its parameter, and returns the calculated sum.

puoblic static BigDecimal calcSummation(String[] =tzE
try {
BigDecimzl =

= BigDecimal. ZERO;

if ((nmll == =trBalances} || 0 == strBalances.length)
return sumBal

for (String =t

wcoctBal @ strBalances)

sumBzl = sumBal.add (new BigDecimal (stricctBal)):
rotarn oumBal:
} catch (RuntimeException e} {
if (!isIgnoreException()) {

throw re;
}

return null;// return null if exception encountered

Note that, the global function does not take ICo11 data as its parameter. BTT will
automatically transform the specified ICo11.*.Balance to an array of String
values by using the instance toString() method. It is necessary to make sure the
instances stored in ICo11.*.Balance can be transformed into valid String values
with the toString() method. The values can be transformed back to their original
instance type.

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

CHAPTER 14 = Reference Sample Topics = How to extend a global function to manipulate collection data 149

Register the implementation class of global function

In this sample, it is supposed that the extended global function is located in the
class com.ibm.btt.test.WildCardFunctions. For the server-side global
functions, Infrastructure developers should register the implementation class in
btt.xml.

.':11_. battml 52
Global Configuration Editor

General Information Detailed Information

type filter text |_Add.. id BTTWildCardFunctions
1YE|LIE com.ibm.btt.test WildCardFunctions l

4 |k globalFunctions -
BTTStringFunctions

BTTDateFunctions

BTTNumberFuncticns

BTTCaollectionFunctions

BTTWildCardFunctions

ignoreException

i)))

Usage Scenario of the global function in mapping editor

This section shows how to use the extended global function in the mapping editor.
Note that, the parameter type is Array and the selected value for the parameter will
be like accountList.*.accountBalance.

Mapping Source Mapping Target
Global Function = I} sampleFlowChe
Global Function K sampleFlowKColl [record]
Bind 1 accountlist [list]

type filter text Name Type Value D' balanceSum [BigDecimal]

(3 BTTWildCard unctions <- Update

@ calcSummation({balances): Number

balances Array accountlist.”.accountBalance

m|»

Update ->»

St ATt
© compare(stringl, string2): Mumber Update Both
@ comparelgnoreCase(stringl, string2): Numbe:
@ concat(stringl, string2): String
@
o

contains(string, sub5tring): Boolean

indexOf(string, subString): Mumber il

a i W D Unbind All

Expression: BTTWildCardFunctions.calcSummation(accountlist.*.accountBalance)

From To

BTTWildCardFunctions.calcSummation{accountlist.*.accountBalance) balanceSum

And finally, here is the generated XML snippet:

<map fromExpression="functs BTTWildCardFunctions.calcSummation(accourtlistf+faccountBalance)"
to="balanceSum"/>

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

150 CHAPTER 14 = Reference Sample Topics = How to extend a global function to manipulate collection data

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

‘ UNICOM Global UN'COM Systems, Inc.

Putting IT All Together.” A Division of UNICOM Gilobal

www.unicomsi.com

We welcome feedback on our documentation. Please email us at:
tech.authors@unicomsi.com

www.uhicomglobal.com

	Contents
	About this manual
	Release levels
	Conventions

	BTT Overview
	Environment Preparation
	Plug-in Project Setup
	Runtime Project Setup

	Dojo Widget Extension
	Enable customized widget in XUI Editor
	Define a widget in xml file
	Display widget in XUI Editor
	Import widget
	Create widget mapping

	Enable customized widget in runtime
	Implement JSP tag handler
	Register JSP tag handler
	Dijit implementation
	JSP template

	Enable customized widget in preview mode
	Register JSP taglib
	Modify JSP template

	Advanced topics
	Customized Property Editor
	New Property Tab
	Customized Property Mapping Rule
	ECA support
	NLS support
	BTT Context data binding
	XUI Generation Template
	XUI page generation from BTT context data
	Change default behavior of XUI generation
	Extend Table Column Widget
	How to add version control on runtime NLS files

	Data Type Extension
	Implement data type extension
	Declare new data type
	Implement type validator
	Implement type converter

	Implement type presentation widget
	Data type extension sample

	Web Services Extension
	Web services Tool Extension
	ID Mapping during self-defined operation generation

	Web services Runtime Extension
	Web services Runtime Overview
	Extend WS Handler and WS Connector

	Channel Policy Management and Extension
	Channel level policy management
	Implement channel policy handler
	Define rule provider service
	Configure policy for channels
	Exception handling

	Operation level policy management
	Implement OpStep for operation level policy
	Configure operation

	Channel policy sample
	How to run the sample

	Process Editor Extension
	Extend processor editor object
	Create configuration file for palette object

	Processor editor extension sample
	ClientPromptState sample
	AlphHtmlProcessor sample

	Global Function Extension
	Extend global functions
	Implement global functions
	Describe global functions in xml
	Register for tooling
	Register for runtime

	Global Function Extension Sample

	Generated JS File Name Extension
	Extend generated JS file naming rule
	Implement naming rule
	Register implementation

	Naming Conventions Extension
	Extend naming conventions
	Extend rule by registering new naming convention rule
	Extend by registering new naming manager class

	Multi-project Support in Extension
	Handle project prefix

	Pagination Extension
	Extend technical pagination operation
	Pagination parameters
	Register customized technical pagination operation

	Client State Extension
	Step 1: Extend a Client State
	Implement state class
	Register the implementation class into btt.xml

	Step 2: Enable the extended State in Transaction Editor
	Create configuration file for the extended client state
	Register extended client state into the palette
	Create configuration file for mapping rules
	Register mapping rules

	Step 3: Extend navigation engine to register command handler
	Extend the navigation engine to register a command handler

	Step 4: Add the reference of new navigation engine to template

	Reference Sample Topics
	How to extend a global function invoked in ECA action
	Define global function in XML
	Register global function definition as Eclipse extension
	Implement JavaScript for global function
	Enable XUI editor aware of this global function

	How to extend a global function to manipulate collection data
	Define global function in XML
	Register global function definition
	Implement the function logic to calculate the sum of account balance
	Register the implementation class of global function
	Usage Scenario of the global function in mapping editor

