
Multichannel Bank
Transformation Toolkit

Extension Development Guide
8.2



Publication information
(September 2016)

Information in this publication is subject to change. 
Changes will be published in new editions or technical 
newsletters.

Documentation set
The documentation relating to this product includes:

■ Multichannel Bank Transformation Toolkit Functional 
Developer User Guide

Copyright notice
Multichannel Bank Transformation Toolkit (the Programs 
and associated materials) is a proprietary product of 
UNICOM Systems, Inc. – a division of UNICOM Global. 
The Programs have been provided pursuant to License 
Agreement containing restrictions on their use. The 
programs and associated materials contain valuable trade 
secrets and proprietary information of UNICOM Systems, 
Inc. and are protected by United States Federal and non-
United States copyright laws. The Programs and associated 
materials may not be reproduced, copied, changed, stored, 
disclosed to third parties, and distributed in any form or 
media (including but not limited to copies on magnetic 
media) without the express prior written permission of 
UNICOM Systems, Inc., UNICOM Plaza Suite 310, 15535 
San Fernando Mission Blvd., Mission Hills, CA 91345 
USA.

Multichannel Bank 
Transformation Toolkit 
© Copyright 1998-2016 All Rights Reserved. UNICOM 
Systems, Inc. – a division of UNICOM Global.

No part of this Program may be reproduced in any form or 
by electronic means, including the use of information storage 
and retrieval systems, without the express prior written 
consent and authorization of UNICOM Systems, Inc.

No part of this manual may be reproduced or transmitted 
in any form or by any means, electronic or mechanical, 
without prior written permission from UNICOM Systems, 
Inc.

Disclaimer
We cannot guarantee freedom from, or assume any 
responsibility or liability for technical inaccuracies or 
typographical errors. The information herein is furnished 
for informational use only and should not be construed as a 
commitment by UNICOM Systems, Inc. – a division of 
UNICOM Global.

Trademarks
The following are trademarks or registered trademarks of 
UNICOM Systems, Inc. in the United States and/or other 
jurisdictions worldwide: Multichannel Bank 
Transformation Toolkit, UNICOM, UNICOM Systems.



Trademark acknowledgements
Macro 4 and Other Divisions of UNICOM Global:
Macro 4, SoftLanding, UNICOM. 

IBM:
IBM®, AIX®, CICS®, CICS/ESA®, CICS TS® CMAC®, 
DB2®, DFSMS/MVS®, Domino®, ESCON®, IMS™, 
Internet Explorer®, iSeries®, Language Environment®, 
LE®, Lotus®, MQSeries®, MVS™, MVS/ESA®, 
OMEGAMON®, OS/390®, OS/400®, Power®, 

POWER®, pSeries®, RACF®, RMF™, S/370®, S/390®, 
SMF®, System/390®, System i®, System p®, System z®, 
VisualAge®, VM/ESA®, VSE/ESA®, VTAM®, 
WebSphere®, z/OS®, z/VM®, z/VSE®, zSeries®, 
z Systems® and the IBM logo are trademarks or registered 
trademarks of IBM Corporation in the United States or 
other countries or both. 

Microsoft:
Active Directory, Excel, Microsoft, Notepad, PowerPoint, 
Visual Basic, Windows, Windows 2000, Windows NT, 
Windows Server 2003, Windows Server 2007, Windows 
Vista, Windows XP, WordPad and/or other Microsoft 
products referenced are either trademarks or registered 
trademarks of Microsoft Corporation. 

Adobe Systems Incorporated:
Adobe® and Acrobat® are either registered trademarks or 
trademarks of Adobe Systems Incorporated in the United 
States and/or other countries. 

Apache Software Foundation:
Apache, Apache Tomcat and Tomcat are trademarks of the 
Apache Software Foundation. 

Apple Inc.:
AirPrint, iPad and Safari are trademarks or registered 
trademarks of Apple Inc. registered in the United States 
and other countries. 

BEA Systems, Inc.:
JRockit and WebLogic are registered trademarks of BEA 
Systems, Inc. 

BMC Software Inc.:
Boole & Babbage, Data Packer, Optimizer and Super 
Optimizer are trademarks or registered trademarks of BMC 
Software, Inc., or its affiliates or subsidiaries (collectively, 
“BMC Software”). 

BSD:
PostgreSQL is distributed under the classic BSD license. 
(Portions Copyright © 1996-2006, PostgreSQL Global 
Development Group; Portions Copyright © 1994-1996 
Regents of the University of California.) 

CA, Inc.:
CA ACF2, CA Datacom, CA Endevor, CA IDMS, CA 
InterTest, CA NetMaster, CA Optimizer, CA Panexec, CA 
Panvalet, CA Ramis, CA Telon and CA Top Secret are 
registered trademarks of CA, Inc. 

Candescent SoftBase LLC:
SoftBase® is a registered trademark of Candescent SoftBase 
LLC. 

Canonical Ltd:
Ubuntu is a registered trademark of Canonical Ltd. 

Chicago-Soft, Ltd.:
QuickRef is a trademark of Chicago-Soft, Ltd. 

Cincom Systems, Inc.:
MANTIS is a registered trademark of Cincom Systems, Inc. 

Computer Sciences Corporation:
Hogan and Hogan Umbrella are trademarks or registered 
trademarks of Computer Sciences Corporation. 

Compuware Corporation:
Abend-AID and Compuware are trademarks or registered 
trademarks of Compuware Corporation. 

Dell Inc.:
Dell and the Dell logo are trademarks of Dell Inc. 

Emtex Limited:
Emtex and VIP are trademarks of Emtex Limited. 

Jean-loup Gailly and Mark Adler:
zlib is a registered trademark or trademark of Jean-loup 
Gailly and Mark Adler. 

GNU General Public License:
Cygwin is free software released under the GNU General 
Public License. 

Google Inc.:
Google and Google Chrome are registered trademarks of 
Google Inc. 

Hewlett-Packard Development Company, L.P.:
HP and HP-UX are registered trademarks of Hewlett-
Packard Development Company, L.P., and/or its 
subsidiaries. 

Innovation Data Processing:
IAM is a registered trademark of Innovation Data 
Processing Corporation. 

Kofax, Inc.:
Kofax, the Kofax logo and Kofax Capture are the 
trademarks or registered trademarks of Kofax, Inc., in the 
United States and other countries. 

Linus Torvalds:
Linux is a registered trademark of Linus Torvalds. 

Massachusetts Institute of Technology (MIT):
Kerberos is a trademark of the Massachusetts Institute of 
Technology (MIT). 

Merrill Pty Ltd.:
MXG is a registered trademark of Merrill Pty Ltd. 

Mozilla Foundation:
Firefox is a registered trademark of the Mozilla Foundation. 

Mozilla Public License:
Expat is free software released under the Mozilla Public 
License. 

Novell, Inc.:
openSUSE is a registered trademark of Novell, Inc. 



The Open Group:
UNIX is a registered trademark of The Open Group. 

Oracle Corporation:
EJB, Java, JDBC, JDK, JMX, JRE, JSP, JVM, Solaris and 
SunOS are trademarks or registered trademarks of Oracle 
Corporation and/or its affiliates. Oracle is a registered 
trademark, and other Oracle product names, service 
names, slogans or logos are trademarks or registered 
trademarks of Oracle Corporation. 

Red Hat, Inc.:
Red Hat, Red Hat Enterprise Linux, the Shadowman logo 
and JBoss are registered trademarks of Red Hat, Inc. in the 
United States and other countries. 

SAP AG:
SAP, the SAP logo, the SAP Partner logo, SAP R/3, SAP 
ArchiveLink, SAP NetWeaver, SAPPHIRE and Duet are 
trademarks or registered trademarks of SAP AG in 
Germany and in several other countries. 

SAS Institute Inc.:
SAS and all other SAS Institute Inc. product or service 
names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. 

Simon Tatham:
PuTTY is copyright Simon Tatham. 

Software AG:
Adabas and Natural are registered trademarks of Software 
AG. Software AG and all Software AG products are either 
trademarks or registered trademarks of Software AG 
and/or Software AG USA, Inc. 

SPARC International, Inc.:
SPARC is a registered trademark of SPARC International, 
Inc. (Products bearing SPARC trademarks are based upon 
an architecture developed by Sun Microsystems, Inc.) 

Standardware Inc.:
COPE is a trademark of Standardware Inc. 

Sun Microsystems, Inc.:
Sun, Sun Microsystems, the Sun logo, MySQL and Solaris 
are trademarks or registered trademarks of Sun 
Microsystems, Inc. or its subsidiaries in the United States 
and other countries. 

SUSE LLC:
SUSE is a registered trademark of SUSE LLC in the United 
States and other countries. 

Syncsort Inc.:
Syncsort is a registered trademark of Syncsort Inc. 

Wireshark Foundation:
Wireshark and the “fin” logo are registered trademarks of 
the Wireshark Foundation.

XEROX CORPORATION:
XEROX, The Document Company and the stylized X are 
trademarks of XEROX CORPORATION. 

X.Org Foundation:
X Window System is a trademark of the X.Org Foundation. 

Additional trademarks and registered trademarks are the 
property of their respective owners. 



5

Contents
Multichannel Bank Transformation Toolkit Multichannel Bank Transformation Toolkit AAAA-1000-00

About this manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Release levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 1 BTT Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2 Environment Preparation  . . . . . . . . . . . . . . . . . . . . . . 13
Plug-in Project Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Runtime Project Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 3 Dojo Widget Extension  . . . . . . . . . . . . . . . . . . . . . . . . 17
Enable customized widget in XUI Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Define a widget in xml file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Display widget in XUI Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Import widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Create widget mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Enable customized widget in runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Implement JSP tag handler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Register JSP tag handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Dijit implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
JSP template  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Enable customized widget in preview mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Register JSP taglib. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Modify JSP template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Advanced topics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Customized Property Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
New Property Tab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Customized Property Mapping Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
ECA support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
NLS support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
BTT Context data binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



Contents6
XUI Generation Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
XUI page generation from BTT context data . . . . . . . . . . . . . . . . . . . . . . . . . 37
Change default behavior of XUI generation. . . . . . . . . . . . . . . . . . . . . . . . . . 39
Extend Table Column Widget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
How to add version control on runtime NLS files  . . . . . . . . . . . . . . . . . . . . . 45

Chapter 4 Data Type Extension . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Implement data type extension  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Declare new data type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Implement type validator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Implement type converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Implement type presentation widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Data type extension sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 5 Web Services Extension  . . . . . . . . . . . . . . . . . . . . . . . .61
Web services Tool Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ID Mapping during self-defined operation generation . . . . . . . . . . . . . . . . . . 62
Web services Runtime Extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Web services Runtime Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Extend WS Handler and WS Connector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 6 Channel Policy Management and Extension  . . . . . . . . .69
Channel level policy management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Implement channel policy handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Define rule provider service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Configure policy for channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Exception handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Operation level policy management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Implement OpStep for operation level policy  . . . . . . . . . . . . . . . . . . . . . . . . 75
Configure operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Channel policy sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
How to run the sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 7 Process Editor Extension  . . . . . . . . . . . . . . . . . . . . . . .79
Extend processor editor object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Create configuration file for palette object  . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Processor editor extension sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

ClientPromptState sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
AlphHtmlProcessor sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Chapter 8 Global Function Extension  . . . . . . . . . . . . . . . . . . . . . .97
Extend global functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Implement global functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Describe global functions in xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Register for tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Register for runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Global Function Extension Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



Contents 7
Chapter 9 Generated JS File Name Extension  . . . . . . . . . . . . . . 107
Extend generated JS file naming rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

Implement naming rule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Register implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

Chapter 10 Naming Conventions Extension . . . . . . . . . . . . . . . . . 111
Extend naming conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

Extend rule by registering new naming convention rule  . . . . . . . . . . . . . . .112
Extend by registering new naming manager class. . . . . . . . . . . . . . . . . . . . .117

Chapter 11 Multi-project Support in Extension . . . . . . . . . . . . . . 121
Handle project prefix  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

Chapter 12 Pagination Extension  . . . . . . . . . . . . . . . . . . . . . . . . 125
Extend technical pagination operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
Pagination parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
Register customized technical pagination operation . . . . . . . . . . . . . . . . . . . . . .131

Chapter 13 Client State Extension . . . . . . . . . . . . . . . . . . . . . . . . 133
Step 1: Extend a Client State  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

Implement state class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
Register the implementation class into btt.xml . . . . . . . . . . . . . . . . . . . . . . .135

Step 2: Enable the extended State in Transaction Editor  . . . . . . . . . . . . . . . . . .136
Create configuration file for the extended client state. . . . . . . . . . . . . . . . . .136
Register extended client state into the palette . . . . . . . . . . . . . . . . . . . . . . . .136
Create configuration file for mapping rules . . . . . . . . . . . . . . . . . . . . . . . . . .137
Register mapping rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138

Step 3: Extend navigation engine to register command handler. . . . . . . . . . . . .140
Extend the navigation engine to register a command handler . . . . . . . . . . .140

Step 4: Add the reference of new navigation engine to template . . . . . . . . . . . . 142

Chapter 14 Reference Sample Topics  . . . . . . . . . . . . . . . . . . . . . 143
How to extend a global function invoked in ECA action . . . . . . . . . . . . . . . . . .144

Define global function in XML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
Register global function definition as Eclipse extension . . . . . . . . . . . . . . . .144
Implement JavaScript for global function  . . . . . . . . . . . . . . . . . . . . . . . . . . .145
Enable XUI editor aware of this global function . . . . . . . . . . . . . . . . . . . . . .146

How to extend a global function to manipulate collection data  . . . . . . . . . . . . .147
Define global function in XML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
Register global function definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
Implement the function logic to calculate the sum of account balance  . . . . 148
Register the implementation class of global function  . . . . . . . . . . . . . . . . . .149
Usage Scenario of the global function in mapping editor . . . . . . . . . . . . . . .149
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



Contents8
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



9

About this manual
Multichannel Bank Transformation Toolkit AAAA-1000-00
As a multi-channel application development toolkit, the Multichannel Bank 
Transformation Toolkit (BTT) implements a set of common and reusable 
components for channel application development. 

Furthermore, BTT provides tools for developers to implement channel applications 
more efficiently and easily. At the same time, for a channel application, there are 
some project specific reusable components and facilities that need to be 
implemented by application developers. BTT provides this capability for 
application developers to implement project level reusable components and 
integrate them with BTT framework.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



About this manual ■ Release levels10
Release levels
Macro 4 product release levels are of the form n.nnn. Minor software updates are 
reflected by a change in the last two digits, and do not necessarily cause the 
documentation to be reissued.

Conventions
The following typographic conventions are used:

boldface  Indicates a command or keyword that you should type, exactly 
as shown.

italics  Indicates a variable for which you should substitute an 
appropriate value.

monotype  Indicates literal input and output.

Ctrl+D  Indicates two or more keys pressed simultaneously.

[ ]  Brackets surround an optional value.

|  Vertical bars separate alternative values from which you must 
make a selection.

...  Ellipsis indicates that the preceding element may be repeated.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



11

CHAPTER 1
Chapter 1 BTT Overview
As a multi-channel application development toolkit, BTT implements a set of 
common and reusable components for channel application development. 
Furthermore, BTT provides tools for developers to implement channel applications 
more efficiently and easily. At the same time, for a channel application, there are 
some project specific reusable components and facilities that need to be 
implemented by application developers. BTT provides this capability for 
application developers to implement project level reusable components and 
integrate them with BTT framework. 

The figure below shows the relationship of BTT framework, BTT extensions and 
the bank channel application.

BTT classifies BTT application developers into two types according to their roles:

■ Infrastructure developer: Infrastructure developers have deep knowledge on 
BTT and related technologies such as OOP and Java EE. As Infrastructure 
developers, they are responsible for designing and implementing the project 
specific components and tool functions.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 1 ■ BTT Overview ■12
■ Functional developer: Functional developers have a little knowledge on 
BTT and related technologies. As Functional developers, they implement 
specific transactions that include user interfaces, operation logics and 
transaction flows. Development productivity is one of the primary 
considerations for Functional developers.

The development phase should make use of the reusable components and largely 
improve the productivity of channel application development. 

A typical BTT application project has two development phases.

■ Infrastructure development phase: where the Infrastructure developers 
design and implement project specific reusable components as BTT extensions 
and customize BTT tools for these extensions if necessary.

■ Incremental development phase: where the Functional developers use the 
tools provided by BTT and the infrastructure phase extensions to develop all 
the transactions.

The figure below shows the skill distribution in the infrastructure development and 
incremental development phases.

In the infrastructure development phase, the Infrastructure developers should 
consider these BTT extensions for a specific project:

■ (Table Column) Widget extension

■ JSP, UI and transaction template customization

■ Generated JavaScript file name extension

■ Processor editor extension

■ Naming convention extension

■ Basic data type extension

■ Channel policy extension

■ Web services connector extension

■ Global functions extension

■ Client state extension.

This document gives details on each of these BTT extensions and how to 
implement them.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



13

CHAPTER 2
Chapter 2 Environment Preparation
A typical BTT extension development extends the BTT runtime functions to meet 
specific project requirements. At the same time, it will also customize the BTT tool 
facilities to use the runtime extension effectively. When developing BTT 
extensions, Infrastructure developers usually create two projects:

■ BTT XUI Web Project that includes the extensions for runtime.

■ Plug-in Project that includes the extensions for tool customization.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 2 ■ Environment Preparation ■ Plug-in Project Setup14
Plug-in Project Setup
This is the procedure to prepare the environment for an Eclipse plug-in project to 
customize the BTT tool.

1 Create a standard Eclipse plug-in project.

a Go to the Eclipse Resources page for information on how to create an 
Eclipse Plug-in Project.

2 Add Plug-in dependencies. 

a Open the plugin.xml file for the plug-in project.

b Click the dependencies tab.

c Add these plug-ins:

org.eclipse.ui 

org.eclipse.core.runtime 

org.eclipse.core.resources 

org.eclipse.draw2d 

org.eclipse.ui.forms

org.eclipse.ui.ide

org.eclipse.ui.views.properties.tabbed 

com.ibm.btt.core 

com.ibm.btt.tools.xui.editor2 

com.ibm.btt.tools.common 

com.ibm.btt.tools.transaction 

com.ibm.btt.tools.transaction.diagram 

com.ibm.btt.tools.transaction.dominate 

com.ibm.btt.tools.transaction.edit 

com.ibm.btt.tools.transaction.editor
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

http://www.eclipse.org/resources/


CHAPTER 2 ■ Environment Preparation ■ Plug-in Project Setup 15
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 2 ■ Environment Preparation ■ Runtime Project Setup16
Runtime Project Setup
This is the procedure to establish a BTT XUI Web Project for implementing BTT 
runtime extensions.

1 Right click the plug-in project you created in ‘Plug-in Project Setup’ on page 14.

2 Click Run As > Eclipse Application.

3 In the Eclipse application instance, create a new BTT XUI Web Project.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



17

CHAPTER 3
Chapter 3 Dojo Widget Extension
BTT dojo widgets wrap the dijit widgets with BTT context binding support. BTT 
dojo widgets have the similar functions as the dijit widgets. Meanwhile, they can be 
bundled with BTT context and data automatically in BTT framework. Functional 
developers could use the BTT XUI editor to compose a page just by dragging and 
dropping BTT dojo widgets without any coding work.

The BTT framework provides the capability for Infrastructure developers to 
implement project- specific widgets and import them into the palette of XUI editor. 
Functional developers can then use these widgets in XUI editor in the same way as 
the original BTT widgets. Three parts are required to develop a project-specific 
BTT dojo widget:

■ Make widgets available in XUI editor, including:

■ Define a widget with xml file

■ Register the widget as an extension of plug-in project

■ Implement Java classes to show the widget in XUI editor

■ Define mapping rules for XUI generation with xml file (Optional)

■ Register the mapping rules as an extension of plug-in project (Optional).

■ Generate HTML and JavaScript code from JSP tag, including:

■ Register tags in JSP tag library file

■ Implement JSP tag handlers.

■ Present a widget in browser, including

■ Implement related JavaScript for the widget.

The figure shows the relationship of the extensions.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■18
Note Blocks with dashed lines are created by Functional developers or generated 
by BTT tools automatically. 

Blocks with solid lines are implemented by Infrastructure developers as 
BTT extensions.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Enable customized widget in XUI Editor 19
Enable customized widget in XUI Editor
The tasks below enable a customized widget in XUI editor:

■ Define a widget in xml file

■ Implement a widget figure class to show the widget in XUI editor

■ Register a widget as an extension of the BTT plug-in

■ Register a mapping rule for generating widgets to JSP tags.

Define a widget in xml file
BTT defines a widget in an xml file. The xml file describes:

■ how the widget is shown in XUI editor

■ the properties of the widget

■ how to edit the properties of the widget.

The sections that follow describe the tags in the widget definition XML file.

Figure tag

It defines how to display widgets in the XUI editor by specifying the displaying the 
class. There are two types of figure classes for implementation, draw2d and SWT. 
These are described in ‘Display widget in XUI Editor’ on page 22. The table below 
gives the attributes for a figure tag.

Property tag

The table below gives the attributes for the property definition element.

Attribute Description

type The type of implementation the class used to show the widget in 
XUI editor. The available values are draw2d and SWT.

class The implementation class used to show the widget in XUI editor.

style Only available for the SWT type figure to provide style 
information.

Attribute Description

name The identifier of the property.

default The default value of this property.

type The type of predefined property editor for this property. The 
value could not be arbitrary, which should be selected from 
the registered type list described in ‘Figure tag’ on page 19.

Default value: String

showInEditor Determines whether to display this property in the widget 
property view.

Default value: true
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Enable customized widget in XUI Editor20
Widget tag

The table below gives the predefined types for the type attribute of the widget 
definition.

showInExpression Determines whether to display this property in the ECA 
action list. 

Default value: false

showInAction Determines whether to display this property in the ECA 
action list. 

Default value: false

Description The description of this property, which is NLS aware.

Level Reserved in current release.

Type Description

String Determines the visibility of the widget. Its available 
values are: visible,

hidden and gone.

Visibility Determines the visibility of the widget. Its available 
values are: visible,

hidden and gone.

Boolean Basic Boolean type. Values are: true and false.

ButtonType Determines the type of a button widget. Values are: 
button, submit, reset, submit with no data and submit 
without validation.

KeyBinding Determines the shortcut key of the widget.

DataName The name of field, data or KeyedCollection in BTT 
context.

DataNameList The name of IndexedCollection in BTT context. This 
type is used for widgets like Combo, SelectList and 
Table.

DataNameTreeContent The name of the Tree widget data in the BTT context.

Image The image of the widget

NLS String with NLS

ErrorLevel Determines the level of error info. Values are: ERROR, 
INFO and WARN

Integer The integer type of the property

OperationName The name of operation.

Attribute Description
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Enable customized widget in XUI Editor 21
Event tag

The table below gives the attributes for an event definition tag.

Function tag

The table below gives the attributes for a function definition tag.

Parameter tag

There is usually more than one parameter tag for each function element. The table 
below gives the attributes for each parameter tag.

Below is a sample of a widget definition:

<widget xmlns="http://btt.ibm.com/WidgetSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://btt.ibm.com/WidgetSchema 
WidgetSchema.xsd ">

<figure type="draw2d" class="org.eclipse.swt.widgets.Button" 
style="TOGGLE"/>

<properties>

<!-- common properties -->

Attribute Description

Name The identifier of the event

Description The description of the event which is NLS.

Attribute Description

name The identifier of the function

description The description of the function which is NLS

showInAction Determines whether to display this function in the ECA 
action list

showInExpression Determines whether to display this function in the ECA 
expression panel

returnType The return type of the function. Values are: String, Number 
and Boolean

parameter The parameter of the function

Attribute Description

name The name of the parameter

description The description of the parameter

type The type of the parameter
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Enable customized widget in XUI Editor22
<property name="id" type="String"/>
<property name="width" default="50" />
<property name="height" default="28" />
<property name="visibility" default="visible" 
type="Visibility"showInAction="true" showInExpression="true" 
description="%desc_prop_visibility" />

<property name="icon" type="Image" showInAction="true" 
showInEditor="true" showInExpression="true" 
description="%desc_prop_icon" />

<property name="ontext" type="String" />
<property name="offtext" type="String" />

</properties>

<events>

<event name="onClick" description="%desc_event_onclick" />
<event name="onKeyDown" description="%desc_event_onkeydown" />
<event name="onKeyPress" description="%desc_event_onkeypress" 
/>
<event name="onKeyUp" description="%desc_event_onkeyup" />
<event name="onMouseDown" 
description="%desc_event_onmousedown" />

<event name="onMouseUp" description="%desc_event_onmouseup" />

<event name="onMouseEnter" 
description="%desc_event_onmouseenter" />

<event name="onMouseLeave" 
description="%desc_event_onmouseleave" />

<event name="onMouseMove" 
description="%desc_event_onmousemove" />

<event name="onChange" description="%desc_event_onchange" />

</events>

<functions>

<function name="isFocusable" showInAction="false" 
showInExpression="true" returnType="Boolean" 
description="%desc_func_isfocusable" />

<function name="focus" showInAction="true" 
showInExpression="false" description="%desc_func_focus" />

</functions>

</widget>

Display widget in XUI Editor
To display the customized widget in XUI editor, Infrastructure developers need to 
implement a figure class to present this widget. There are two types of figure class 
could be used: draw2D and SWT.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Enable customized widget in XUI Editor 23
draw2D shows a widget in the XUI editor with an image. This type of figure class 
can be easily implemented, but its look does not change when you edit the widget 
properties in the XUI editor. SWT type figure is a standard Eclipse SWT widget. It 
supports dynamic change when you edit the widget properties in XUI editor, such 
as changing text of widget.

To implement draw2D type figure, Infrastructure developers can either directly 
extend from the class org.eclipse.draw2d.Shape, or extend from 
com.ibm.btt.tools.xui.editor2.figure.LabelShape, which provides more 
facilities to implement. If the figure class extends from 
com.ibm.btt.tools.xui.editor2.figure.LabelShape, load an image as a 
label icon and refresh in its constructor method. Sample code as below:

getLabel().setIcon(Activator.
getImageDescriptor("images/AccountWidget.PNG").createImage());

refresh();

For the SWT type figure, Infrastructure developers should follow the Eclipse SWT 
specification to implement any necessary SWT widget.

Import widget
To enable the customized widget available in XUI editor, Infrastructure developers 
need to add an extension for this widget in the plugin.xml file of the extension plug-
in project. To import a widget:

1 Open the plugin.xml file.

2 Click the Extensions tab.

3 Click Add.

4 In the Extension Point Filter field, input com.ibm.btt, 

5 Click com.ibm.btt.tools.xui.editor2.widgets. 

6 Click Finish.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

http://www.eclipse.org/swt/


CHAPTER 3 ■ Dojo Widget Extension ■ Enable customized widget in XUI Editor24
7 Right click com.ibm.btt.tools.xui.editor2.widgets then click New > widget.

If you click New > category, a new widget category will be created to group 
widgets in the palette of XUI editor.

8 In the Extension Element Details dialog box, type the applicable 
information.

■ name: The value of this field serves as widget id, so it should be unique.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Enable customized widget in XUI Editor 25
■ label: The value of this field is the display name of the widget which will be 
shown in palette. It supports NLS.

■ icon: This field allows users to select an image to display the widget in the 
palette of XUI editor. Image in 16x16 pixels is recommended as it is 
consistent with existing BTT widgets.

■ category: This field allows users to input the category which the widget 
belongs to.

■ config: This field allows users to select the widget definition file described 
in ‘Define a widget in xml file’ on page 19.

■ container: This field allows users to set if the widget has the ability to 
contain other widgets (true) or not (false).

■ description: This field requires the user to input a short description for a 
widget.

Create widget mapping
After Functional developers complete composing the XUI file and when they select 
Generate Dojo Page function, BTT tools automatically generate the JSP file for this 
XUI file. In order to generate proper JSP tags for the customized widget, 
Infrastructure developers need to create a new widget mapping file and register it 
as BTT plug-in extension.

Create widget mapping file
■ In a widget mapping file, there should be one mappings tag for which there is 

only one attribute:

■ prefix: the prefix text of tags when mapping widget to JSP tags. The value 
should be the same as the prefix attribute of tablib directive in JSP file.

■ Each widget requires a widget-mapping element to describe how BTT maps 
this widget to a JSP tag. The widget-mapping tag has two attributes:
■ widgetName: the name for the given widget. It should match with the 

name defined in the widget extension described in ‘Import widget’ on 
page 23.

■ tagName: the JSP tag name for this widget.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Enable customized widget in XUI Editor26
■ By default, each widget property name will be mapped into the same attribute 
name of the JSP tag directly. To customize property mappings, Infrastructure 
developers can define a property-mapping element to specialize the mapping 
from widget property to a tag attribute. There are 3 attributes for the property-
mapping tag:

■ propName: the name of the property which should be the same as the 
name defined in widget definition file described in ‘Implement JSP tag 
handler’ on page 28.

■ attrName: the name of the attribute which maps a property to a JSP tag.
■ rule: the property mapping rule which can handle more flexible property 

mapping scenarios.

To find out how to implement a property mapping rule, see ‘Customized Property 
Mapping Rule’ on page 33. Below is a snippet from a widget mapping file:

<mappings prefix="bttdojo:">

<widget-mapping widgetName="AccountWidget" tagName="account">

<property-mapping propName="labelColor" attrName="color" />

<property-mapping propName="balanceColor"  
rule="RGBValueRule" />

</widget-mapping>

</mappings>

Register widget mapping

1 In the Extensions tab of plugin.xml file.

2 Click Add.

3 Click com.ibm.btt.tools.xui.editor2.generator.

4 Click Finish.

5 Right click com.ibm.btt.tools.xui.editor2.generator then click 
New > mapping.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Enable customized widget in XUI Editor 27
6 In Extension Element Details dialog box, click the mapping file defined 
previously into the file field.

Extend Default Widget Generator

A widget generator is used to map the XUI widget into a JSP tag according to the 
widget mapping file described previously. Infrastructure developers should 
implement and register a new widget generator by extending the default one to 
meet the project-specific scenario, such as supporting new mapping properties for 
extended widget.

To implement a new widget generator, Infrastructure developers should extend the 
class com.ibm.btt.tools.xui.editor2.generator.WidgetGenerator and 
override the method:

public void generate(StringBuffer buffer)

The method is invoked to generate JSP tag for a widget and the generated text need 
to be appended into the buffer object.

To register a new widget generator, Infrastructure developers should follow the 
procedure below.

1 Open the Extensions tab of plugin.xml file.

2 Click Add.

3 Click com.ibm.btt.tools.xui.editor2.generator.

4 Click Finish.

5 Right click com.ibm.btt.tools.xui.editor2.generator then click 
New > widgetGen.

6 In the Extension Element Details dialog, type the applicable information.

■ class: choose the new widget generator class implemented previously.

■ target: select the class 
com.ibm.btt.tools.xui.editor2.model.impl.WidgetModel

■ priority: select medium or high to override default widget generator.

■ name: type the name of this generator.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Enable customized widget in runtime28
Enable customized widget in runtime

Implement JSP tag handler
After the new JSP tag for a widget has been generated into a JSP file, it still requires 
a tag handler to generate the dynamic HTML content for this new JSP tag at 
runtime. This section describes how to implement a JSP tag handler and how to use 
it in the BTT framework.

Infrastructure developers do not need to implement a JSP tag handler from scratch. 
A new tag handler could be extended from BTT facility classes. BTT provides two 
abstract tag handlers for Infrastructure developers to extend.

The com.ibm.btt.dojo.tag.AbstractSimpleTag class is provided for the 
handler that handles the tag and does not contain sub-tags or inner content, such as 
a button or label tag. Two methods must be overridden when extending from 
AbstractSimpleTag:

protected void initAttributes()

The tag handler needs to put the corresponding DOJO widget type into the 
attributes in this method.

protected void initAttributes(){

super.initAttributes();

attributes.put("dojoType", "com.ibm.btt.dijit.Account");

}

protected String getTagName()

The tag handler needs to return the corresponding HTML tag name of the DOJO 
widget in this method. If it is not a DOJO widget tag, then return null. 
Additionally there are two hook methods for Infrastructure developers to 
implement more flexible tag handlers.

protected void beforeGenerateTag(StringBuffer buffer)

The method is used for subclass to inject other JavaScript code or generate hidden 
HTML fields before BTT generate dojo code.

protected void afterGenerateTag(StringBuffer buffer)

The method is used for the subclass to inject other JavaScript code or generate 
hidden HTML fields after BTT generates dojo code.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Enable customized widget in runtime 29
The com.ibm.btt.dojo.tag.AbstractBodyTag class is provided for a handler 
which handles tag contains sub-tags or inner content. For example, table tag may 
have nested column tags to describe each column in table.

The AbstractBodyTag handles the logic of generating content for sub-tags Like 
extending from AbstractSimpleTag, both initAttributes() and 
getTagName() methods must be overridden.

Besides beforeGenerateTag and afterGenerateTag, a new method is provided 
for Infrastructure developers to extend.

protected void afterGenerateStartTag(StringBuffer buffer, 
Map<String, String> attributes)

As indicated by name, this method is used for subclass to inject the code after 
generating the start tag.

Register JSP tag handler
To make sure the implemented JSP tag handler can be used by BTT at runtime. 
Infrastructure developers need to create a new JSP lib file to support tags created 
for new widgets. The file follows standard JSP tag library schema. You can access 
http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd for more information.

Dijit implementation
Widget JavaScript implementation presents a widget in browser. Infrastructure 
developers can implement JavaScript by extending some dijit widget or BTT Dojo 
dijit. The widget JavaScript is recommended to extend from 
com.ibm.btt.dijit.AbstractWidgetMixin provided by BTT which provides 
NLS and visibility functions support. Some implementation samples are provided 
by BTT product.

JSP template
After the JavaScript class for the widget has been implemented, the class needs to 
be added into JSP require declaration section by XUI generation. So Infrastructure 
developers need to create a new JSP template file or edit the existing BTT JSP 
template file to add the required declaration for the new JavaScript class. By 
default, JSP template files are in the WebContent/templates folder of XUI web 
project.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd


CHAPTER 3 ■ Dojo Widget Extension ■ Enable customized widget in preview mode30
Enable customized widget in preview mode
The BTT XUI editor provides the preview function that lets Functional developers 
preview the XUI file in a browser before the file is generated into a JSP file and 
deployed on application server. This function benefits Functional developers as 
they can see what the XUI file is like in a browser without effort of deploying.

When the XUI file is previewed, the BTT tools will dummy a JSP environment to 
invoke JSP tag handler so that it converts a JSP tag into an HTML tag. In order to 
make sure the BTT tools invoke the right JSP tag handler, Infrastructure developers 
need to register the JSP taglib information in their widget extension project. 
Meanwhile, as the preview environment is not a real JSP runtime environment, JSP 
code is not executed. Infrastructure developers need to ensure the template does 
not contain any JSP code.

Register JSP taglib

Register JSP tag handler in widget extension project

To enable the customized widget in preview mode, Infrastructure developers need 
to register the tag library information so that the right HTML code can be 
generated for preview. The extension point is 
com.ibm.btt.tools.xui.editor2.taglib.

A sample of the configuration is shown in below:

■ prefix: the prefix text for tags when mapping the widget to JSP.

■ tld: the tag library file which follows the standard JSP tag library schema.

Adding a jar file containing JSP tag handler into classpath of 
widget extension project

1 Open plugin.xml and click the Runtime tab.

2 In the Classpath area, click Add. 

3 Click the jar file that contains the customized JSP tag handlers.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Enable customized widget in preview mode 31
Modify JSP template
As BTT supports developing applications in multi-project mode, some resources 
such as JavaScript files and image files are possibly not stored in the same project as 
the XUI file to be previewed. In order to make sure the resources in other projects 
could be loaded when XUI file is previewed, BTT lets Infrastructure developers 
add a special remote project prefix to load these resources.

The prefix is:

<%=JSPUtil.getRemoteProjectURL("[remote project key]")%>. 

The parameter remote project key is the project key configured in btt.xml of 
the current project. For example, if document.css is stored in project globalWAR 
(key name) and at path /js/dijit/themes/claro/, Functional developers should add a 
snippet into the template file as following:

@import “<%=JSPUtil.
getRemoteProjectURL("globalWAR")%>

js/dijit/themes/claro/document.css"

Be aware that although the prefix is in JSP code style, it does not mean BTT 
supports JSP code in the template when the XUI file is previewed.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Advanced topics32
Advanced topics
In the previous sections of this chapter, we have described the primary steps of 
implementing a customized BTT widget. Now, we will go through some advanced 
topics when developing new widget.

Customized Property Editor
BTT provides several types of property editors for editing widget properties. They 
can be used to edit property types listed in Table X-Y. If there is other type of 
property such as Color, Infrastructure developers need to develop and register a 
new property editor.

Implement property editor

BTT follows the approach for implementing property editors of the Eclipse 
framework. All property editors must extend from the class 
org.eclipse.ui.views.properties.PropertyDescriptor. Infrastructure 
developers could either use the existing Eclipse property descriptor 
implementations or extend the class PropertyDescriptor to implement their own 
property editor.

Furthermore, BTT implements an abstract class 
com.ibm.btt.tools.xui.editor2.properties.desc.SelectionPropertyDe
scriptor for convenience of Infrastructure developers to implement property 
editors like Select List style. When extending the class 
SelectionPropertyDescriptor, Infrastructure developers need to override the 
method protected String[] getSelections() to return all the possible 
options.

Register property editor

To enable the customized property editor used in the XUI editor, Infrastructure 
developers need to register the property editor as an extension of the BTT plug-in. 
The following steps describe how to register a property editor:

1 Click the Extensions tab of plugin.xml file.

2 Click Add.

3 Click com.ibm.btt.tools.common.properties.

4 Click Finish.

5 Right click com.ibm.btt.tools.common.properties. then click 
New > property.

6 In the Extension Element Details dialog, type the applicable information.

■ type: the property type edited by this registered editor. The property type 
should be the same as the type attribute value defined in the widget 
definition xml file described in ‘Define a widget in xml file’ on page 19.

■ class: the implementation class of property editor.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Advanced topics 33
New Property Tab
When Functional developers edit properties of the new widget, Appearance, 
Properties and Rules tabs will be shown by default. If the widget has action an 
property defined in the widget definition, the Action tab will be shown. If the 
widget has styleclass property in the widget definition, the Style tab will be shown.

BTT provides capabilities to add a new property tab for some specific property by 
following the Eclipse Tabbed Properties View implementation. If some property 
cannot be configured in the Properties tab due to its complexity, Infrastructure 
developers could add a new tab for it. For information on how to implement a 
property tab and register it as an extension into BTT plug-in, please refer to Eclipse 
Tabbed Properties View. 

When adding new extensions to 
org.eclipse.ui.views.properties.tabbed.propertyTabs and 
org.eclipse.ui.views.properties.tabbed.propertySections for the BTT 
XUI editor, the field contributorId needs to be set as 
com.ibm.btt.rcp.xui.editor2.XUIEditor.

If the new property tab is implemented for a property, Infrastructure developers 
need to set the showInEditor attribute of the property to be false in the widget 
definition file to ensure the property will not be edited in the Properties tab.

Customized Property Mapping Rule
As described in ‘Create widget mapping’ on page 25, if Infrastructure developers 
want to have more flexibility to customize property mapping, they should 
implement and register a property mapping rule for specific property type.

Implement property mapping rule

To implement property mapping rule, Infrastructure developers need to implement 
interface com.ibm.btt.tools.xui.editor2.generator.IRule and override 
the process method.

Register property mapping rule

To enable the implemented property mapping rule used when BTT generates a JSP 
file, Infrastructure developers need to register the rule as an extension of BTT plug-
in. The following steps describe how to register a property mapping rule:

1 Click the Extensions tab of plugin.xml. 

2 Click Add.

3 Click com.ibm.btt.tools.xui.editor2.generator.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_properties_view.html
http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_properties_view.html


CHAPTER 3 ■ Dojo Widget Extension ■ Advanced topics34
4 Click Finish.

5 Right click com.ibm.btt.tools.xui.editor2.generator then click 
New > property.

6 In the Extension Element Details dialog, type the applicable information.

■ name: The name of the rule. It should be the same as the rule attribute 
value described in ‘Create widget mapping’ on page 25.

■ class: The implementation class of this rule.

ECA support
BTT provides the ECA tool for Functional developers to handle JavaScript 
visually. Infrastructure developers may need to expose some functions or events of 
customized widget for the ECA tool.

Add Functions for widget

To add widget functions, Infrastructure developers need to define them in the 
widget definition file described in ‘Define a widget in xml file’ on page 19. Then 
these functions will be used in the ECA tool and be invoked according to ECA rule. 
Below is a sample definition:

<function name="setBalance" 
showInAction="true" 
showInExpression="true" 
returnType="Number" 
description="return balance of account" />

Add Events for Widget

To add widget events, Infrastructure developers need to register them into the 
widget definition file described in ‘Define a widget in xml file’ on page 19. Then 
these events will be used in the ECA tool and be triggered according to the ECA 
rule.

<event name="onClick" 
description="event when button is clicked" />

Monitor ECA Execution

BTT provides an ECA execution monitor to print ECA rule execution traces at 
runtime in browser console. For performance consideration, the monitor is 
disabled by default. If developers want to print rule execution traces during 
development, they can enable the ECA monitor by adding the following code in 
the template file for JSP generation:

engine.setMonitor(new com.ibm.btt.event.BaseMonitor());
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Advanced topics 35
The following is a sample output trace of ECA monitor in the browser console.

Customize Default Monitor

Infrastructure developers can customize the ECA rule monitor for their specific 
purpose. In this case, they need to write JavaScript code to extend the class 
com.ibm.btt.event.BaseMonitor and implement these methods:

■ monitorStartRule : function(event, rule). Invoked when begin to 
execute a rule.

■ monitorEndRule : function(event, rule). Invoked when complete 
executing a rule.

■ monitorCondition : function(event, rule, result). Invoked when 
complete a condition evaluation.

■ monitorCallFunctionAction : function(id, functionName, args, 
result). Invoked when complete calling a function.

■ monitorGetPropertyAction : function(id, property, value). 
Invoked when complete retrieving a property from a widget.

■ monitorSetPropertyAction : function (id, property, value). 
Invoked when complete setting a property to a widget.

NLS support
Eclipse already provides for NLS support and BTT follows the same way to enable 
a widget supporting NLS. As described above, many description and label fields 
support NLS. To leverage NLS provided by Eclipse and BTT, Infrastructure 
developers need to:

■ Define Bundle-Localization path in MANIFEST.MF

Bundle-Localization entry defines which property files are loaded at runtime for 
NLS. This entry definition contains the name and the corresponding property file 
used to translate the plug-in strings that start with the prefix %. Below is a sample 
definition entry.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Advanced topics36
Bundle-Localization: plugin

■ Move translatable strings into property files

When the Bundle-Localization path has been defined, Eclipse will use the file 
[path]_[locale].properties for specific locale. For example, if the path is set to plug-
in, then Eclipse will use the file plugin.properties for default locale, use file 
plugin_zh.properties to support a Chinese locale and use file plugin_es.properties 
to support a Spanish locale. Infrastructure developers need to move translatable 
strings into specific properties file to support the specific language.

■ Use % strings for NLS support property or attribute

For example, the description attribute of event tag supports NLS. To define the 
description attribute, Infrastructure developers need to use %[description]. See the 
example below:

<event name="onClick" description="%desc_event_onclick" />

Meanwhile, Infrastructure developers need to add description messages into 
different properties files. For example, the plugin.properties file could contain:

desc_event_onclick = event triggered when the widget is clicked

Please access the Internationalize your Eclipse Plug-In on the Eclipse website to get 
more information about how Eclipse plug-ins supports NLS.

BTT Context data binding
Like BTT original widgets, customized widgets can be easily bundled with BTT 
Context data. Infrastructure developers need to do nothing in code. If a widget 
needs to be bundled with a DataField type data, Infrastructure developers need to 
define a dataName type property named dataName. If a widget needs to be 
bundled with Collection type data, Infrastructure developers need to define a 
dataNameList type property named dataNameForList. BTT runtime will assign 
value of specified Context field into this attribute.

XUI Generation Template
When the BTT XUI editor generates an XUI file into a JSP file, it uses a template 
file. The template file should include common content of a JSP page, such as 
charset, included css files and js files. By default, BTT provides two template files 
which are in the WebContent/templates folder (the folder can be configured in 
XUI Default Settings of XUI Web Project Properties Dialog) of a XUI Web project:

■ template_debug.ftl: enables ECA debug console for debugging purpose.

■ template_ftl: disables the ECA debug console for higher performance at 
runtime. Infrastructure developers can implement project-specific template file, 
and put it into the WebContent/templates folder. When the XUI editor 
generates an XUI file into a JSP file, all template files in this folder will be 
shown as candidate templates for user to choose. The template files should 
follow the FreeMarker specification and standard FreeMarker directives can be 
used in template files. Furthermore, the following variables are supported in 
template files:

■ content: represents all the content of a specific JSP file in text format.

■ user: the user who generates this JSP file
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

http://www.eclipse.org/articles/Article-Internationalization/how2I18n.html


CHAPTER 3 ■ Dojo Widget Extension ■ Advanced topics 37
■ date: the date when generates this JSP file.

■ cssFiles: the list of cssFiles which should be included in this JSP file.

■ xui_file: the name of the XUI file that generates this JSP file. 

■ js_file: the list of js files which should be included in JSP file 

■ encoding: the charset of this JSP page

Please refer to the page 
http://freemarker.sourceforge.net/docs/dgui_quickstart_template.html for more 
information about the FreeMarker template schema.

XUI page generation from BTT context data
BTT tools provide the function to generate an XUI page skeleton from transaction 
context data. With this feature, Functional developers do not need to create the 
XUI page from scratch. This greatly improves the productivity of application 
development. When a project-specific widget is created, Infrastructure developers 
can register this new widget into the candidate widget list of the transaction editor 
shown as below:

The following steps describe how to register a widget for XUI page skeleton 
generation:

Register new extension point

1 Right click com.ibm.btt.tools.transaction.editor.widgets then click 
New > widget.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE

http://freemarker.sourceforge.net/docs/dgui_quickstart_template.html


CHAPTER 3 ■ Dojo Widget Extension ■ Advanced topics38
2 In the Extension Element Detail dialog. type the applicable information.

■ name: the name of the widget. This name should be the same as the one 
registered in the extension of 
com.ibm.btt.tools.xui.editor2.widgets described in ‘Import 
widget’ on page 23.

■ UIValidatorClass: the implementation class that decides if the widget will 
be shown in the candidate widget list when a specific data element is 
selected. The class should implement the interface 
com.ibm.btt.tools.transaction.validator.WidgetValidator.

■ XUIGeneratorClass: The implementation class that generates the widget 
to XUI file. Infrastructure developers can either use BTT default XUI 
widget generation class 
com.ibm.btt.tools.transaction.generator.W idgetUIGenerator 
or implement specific widget generation class by implementing the 
interface 
com.ibm.btt.tools.transaction.generator.WidgetGenerator.

Implement required classes
■ UIValidatorClass: The implementation class must implement the validate 

method of the interface WidgetValidator. The following is the description of 
this method:

■ XUIGeneratorClass: Please refer to ‘Create widget mapping’ on page 25 for 
more details about how to implement a widget specific generation class.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Advanced topics 39
Change default behavior of XUI generation
BTT implements the default behavior of generating the XUI page skeleton from 
transaction context data. For example, a Text widget will be used for field type data 
and Table widget will be used for iColl type data. It is also possible for 
Infrastructure developers to override this default BTT behavior such as using a 
customized widget for iColl type data.

There are two ways for Infrastructure developers to change the default behavior of 
XUI generation:

■ Simple way: Infrastructure developers could give some controls on BTT 
default generation behavior without the effort of implementing a new XUI 
generation class. They can change the default behavior by modifying the 
configuration file of default BTT XUI generator. This way fits for changing or 
creating the mapping between data type and widget.

■ Full control way: Infrastructure developers can implement and register a new 
XUI generator to have the full control on XUI generation. The following steps 
described how to change default BTT behavior of generating the XUI page 
skeleton.

Register an extension

1 Add a new XUIDefaultGenerator element to the extension 
com.ibm.btt.tools.transaction.editor.XUIDefaultBehaviourGenerator.

2 In the Extension Element Details dialog, type the applicable information.

■ name: The name of the generator which should be unique.

■ file: the configuration file for the generator.

■ class: the implementation class of the generator. Infrastructure developers 
can either use the default BTT class 
com.ibm.btt.tools.transaction.xuigenerator.XUIGenerate or a 
new class which implements the interface 
com.ibm.btt.tools.transaction.xuigenerator.IXUIGenerate.

■ priority: the priority of this extended generator. If the extension point is 
registered by multiple plug-ins, the highest priority extension will be 
invoked by BTT. BTT default generator is registered as low priority. So the 
customized generator should be registered as medium or high priority.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Advanced topics40
Modify default configuration file

The default configuration file of XUI generation maintains the mapping 
information between XUI widget and context data type. The following is the 
content in BTT default configuration file. Infrastructure developers can create a 
new file to create a new mapping entry or modify the existing mapping entries.

Note The dataElement value must match with the one defined in btt.xml file 
(data > classTable section). And the widgetName value must be the widget 
name that defined in the extension of com.ibm.btt.tools.xui.editor2.

Implement new XUI generation class

BTT provides the capability for Infrastructure developers to implement and 
register a new XUI generation class to have full control when generating an XUI 
page skeleton from transaction context data. The class should implement the 
interface com.ibm.btt.tools.transaction.xuigenerator.IXUIGenerate. 
The following are the API descriptions of IXUIGenerate interface:

■ public void generateXUIFile(String folder, String fileName, 
String XUITemplateName, List <MetaData> dataToBeGenerated, 
String contextName)

The method performs XUI generation for data passed as a parameter named 
dataToBeGenerated. This data is in the context hierarchy specified as 
argument. In case of using a template (XUITemplatName parameter), the 
generated content is located in the first form of the template. The generation is 
performed in the file with the fileName and in the folder specified as 
parameter folder.

■ public void generateXUIFile(String folder, String fileName, 
String XUITemplateName, List <MetaData> dataToBeGenerated, 
String contextName, Hashtable <String, String> defaultMapping)

The method performs XUI generation for data passed as a parameter named 
dataToBeGenerated. This data is in the context hierarchy specified as 
argument named contextName. For data included in defaultMapping, the 
widget generated is the one specified in this hashtable. So this hashtable must 
contain keys as the following values: IXUIGenerate.FIELD, 
IXUIGenerate.KEYED_COLLECTION, IXUIGenerate.INDEXED_COLLECTION 
and IXUIGenerate.DATA and corresponding values must a widget name.

In case of using a template (XUITemplatName parameter), the generated 
content is located in the first form of the template. The generation is performed 
in a file with the fileName and in the folder specified as parameter folder.

■ public IRootModel generateXUIFile(String XUITemplateName, List 
<MetaData> dataToBeGenerated, String contextName)
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Advanced topics 41
The method performs XUI generation for data passed as a parameter named 
dataToBeGenerated. This data is in the context hierarchy specified as 
argument named contextName. In case of using a template (XUITemplatName 
parameter), the generation content is located in the first form of the template. 
An IRootModel object is returned containing the generation result.

■ public IRootModel generateXUIFile(String XUITemplateName, List 
<MetaData> dataToBeGenerated, String contextName, Hashtable 
<String, String> defaultMapping)

The method performs XUI generation for data passed as a parameter named 
dataToBeGenerated. This data is in the context hierarchy specified as 
argument named contextName. For data included in defaultMapping, the 
widget generated is the one specified in the hashtable. This hashtable must 
contain keys as the following values: IXUIGenerate.FIELD, 
IXUIGenerate.KEYED_COLLECTION, IXUIGenerate.INDEXED_COLLECTION 
and IXUIGenerate.DATA.

In case of using a template (XUITemplatName parameter), the generated 
content is located in the first form of the template. An IRootModel object is 
returned containing the generation result.

Extend Table Column Widget
BTT has provided several default definitions for table column widgets in the XUI 
Editor. Besides, the widgets displayed in a table column, their properties and the 
rules for JSP generation could also be extended through Eclipse extension points 
and some XML definitions.

Define Extension for Table Column Widget

If Infrastructure developers need to customize table column widgets in his self-
defined plug-in project, the prerequisite is to add the plug-in 
com.ibm.btt.tools.xui.editor2 as the plug-in dependency.

1 Right click com.ibm.btt.tools.xui.editor2.widgets then click New > widget.

2 In the Extension Element Details dialog, type the applicable information. for 
name, label, icon and config.
For the attribute conifg, you should choose or specify a relative path of the 
widget definition file. Later, Infrastructure developers will take steps to create 
an XML file to describe this widget.

If Then

Infrastructure developers need to define 
a common XUI widget which could also 
be used as a table column widget.

Click widget

Infrastructure developers need to define 
a widget that is only for use as a table 
column widget.

Click internalWidget
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Advanced topics42
Configure Detailed Definition for Table Column Widget

In XUI Editor, Infrastructure developers could follow the same style to describe a 
column widget just like the common widget definition. For facility in this extension 
sample, we have copied the xml definition file of the link widget (Link.xml) in the 
BTT product and made some modifications on it with below steps:

1 Rename the Link.xml to ColumnLink.xml.

2 Move to the folder widgets.

3 Delete the functions and events sections from the file

4 Add a tag named columnWidget to indicate this widget will be used for table 
column <columnWidget editable="false"/>

The details of available attributes for tag columnWidget are listed in below 
table.

The sample code snippet of this column widget definition is listed below.

5 Add or remove property tag in the properties block to indicate the properties 
of the widget.

<property name="visibility" default="visible"
 type="Visibility" showInColumn="true"/> 

Attribute Description

name The attribute to identify the column widget. It is optional and the 
widget name registered in extended plug-in will be used if this 
attribute is not defined.

editable The available values are ‘true’ and ‘false’ which indicate whether 
the widget could be chosen as an editable one or not for a table. 
Besides, it is optional and the widget could be chosen from both 
the editable and read-only widget list in table properties view.

addTypeInfo This attribute is optional and asks for a Boolean value. It will be 
used if the widget needs to be bound with a BTT typed data. If it 
is set to true, the generated jsp tag of the widget will contain the 
attribute named ‘type’.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Advanced topics 43
The details of the available attributes for tag property are listed in below table.

The sample code snippet of this column widget definition is listed below.

Configure Mapping Rules for Table Column Widget

There are more details about this topic in ‘Customized Property Mapping Rule’ on 
page 33.

If there is some special logic put in during the JSP generation, such as extra 
conversion for the names and values of JSP tag attributes, you need to define a 
mapping rule for the column widget.

Taking the above snippet as an example, the tagged block widget-mapping 
matches with the generation rules for the sample column widget ColumnLink. The 
attributes for the tag widget-mapping are listed in below table.

Attribute Description

name The attribute is used to define the property name. It is required; 
otherwise this property will be ignored during generation.

type The attribute is used to indicate which property editor will be 
used for this property. The value of it should equals with one of 
the registered property editor ID in existing BTT toolings. It is 
required; otherwise the property editor will be disabled in 
editor.

default The attribute is used to indicate the default value of this 
property. The generated JSP tag will contain this default value 
attribute if it is defined. It is an optional one.

showInColumn The attribute asks for a Boolean value which defines whether 
this property is available when this widget is used for a table 
column.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Advanced topics44
In the above sample snippet, the tag property-mapping matches with the detailed 
mapping policy for each widget property during generation. The attributes for tag 
property-mapping are listed in below table.

Define Extension for Mapping Rule of Table Column Widget

There are more details about this topic in ‘Customized Property Mapping Rule’ on 
page 33.

Finally, if Infrastructure developers decides to use the extra rule to control the 
value generation of JSP attributes, they also need register the rule into BTT tooling 
extension to indicate the path of the configuration file which contains the mapping 
rules. To do that, they could define an extension for the extension point 
com.ibm.btt.tools.xui.editor2.generator. Then as in the graphic below, 
add a child option of type rule.

As the graphic below shows, the required attributes name and class should be 
configured. Especially for the attribute class, Infrastructure developers need to 
indicate the full path to a class which implements the interface 
com.ibm.btt.tools.xui.editor2.generator.IRule. During the JSP 
generation, the class would be instantiated and executed for the configured 
mapping rules.

Attribute Description

widgetName The attribute is used to link the generation rules with the registered 
column widget. It is required otherwise the rules could not be 
assigned correctly. So its value should equals with the column 
widget identifier.

tagName The attribute is required and used to indicate the JSP tag name for 
the column widget generation.

Attribute Description

propName The attribute is used to indicate the identifier of the property which 
needs extra generation logic.

attrName The attribute is used to indicate that the property name will be 
replaced with the value of attrName during JSP generation. It is 
used for conversion of JSP attribute name.

rule The attribute is used to indicate the identifier of a registered mapping 
rule. It is used for conversion of JSP attribute value.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Advanced topics 45
Infrastructure developers need to add code for the attribute value conversion as the 
graphic shows.

How to add version control on runtime NLS files
BTT provides the basic infrastructure to support project-specific version control of 
runtime NLS files. In this chapter, Infrastructure developers will be guided to 
implement their version control logic which governs runtime NLS files by 
timestamp.

Customize tooling behavior of NLS file generation

For the tooling side, BTT provides the default framework for runtime NLS control.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 3 ■ Dojo Widget Extension ■ Advanced topics46
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



47

CHAPTER 4
Chapter 4 Data Type Extension
BTT typed data elements represent business objects such as Date, ProductNumber 
and Money. Compared with non-typed data element, a typed data element 
identifies how BTT displays the business object and what validation must occurs 
when BTT changes a data value. BTT types can be a simple type or a compound 
type. A simple type only has a single property while a compound type has multiple 
properties. By default, BTT provides four basic types, such as String, Number, Date 
and Currency. BTT also provides the capability for Infrastructure developers to 
implement project-specific data types.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 4 ■ Data Type Extension ■ Implement data type extension48
Implement data type extension

Declare new data type
To create a project-specific data type, firstly Infrastructure developers need to 
declare this new type in type.xml file. The declaration includes:

■ Type id
It is the name of the type and should be unique.

■ Implementation class
It defines the implementation class of the type. For simple type which has only 
one property, the implementation class is com.ibm.btt.base.DataField. For 
compound type which has multiple properties, the implementation class is 
com.ibm.dse.base.KeyedCollection or 
com.ibm.btt.base.IndexedCollection.

■ Property Descriptor
Property descriptor specifies the default business rules and behaviors for this 
data type. A type can have one or more property descriptors. For a simple type, 
it has only one property descriptor. For a compound type, it has multiple 
property descriptors. A property descriptor can have only one validator which 
is used to check the data instance, and one or multiple converters which are 
used to transform the data instance into a specific format.

The below figure shows the relationship of type, property descriptor, converter and 
validator.

In most cases, Infrastructure developers do not need to implement their own 
property descriptor class. BTT provides SimplePropertyDescriptor for simple 
types and provides KCollPropertyDescriptor and ICollPropertyDescriptor 
for compound types and provides StringDescriptor, IntegerDescriptor, 
FloatDescriptor, and DateDescriptor for the basic types. Infrastructure 
developers can also implement their own property descriptor for some special cases 
by extending AbstractPropertyDescriptor which is the parent for all property 
descriptors. The graphic below shows hierarchy of property descriptor classes.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 4 ■ Data Type Extension ■ Implement data type extension 49
Below is an example of a type definition:

<type id="Currency" implClass="com.ibm.btt.base.DataField">

<Descriptor id="typeDefault"
implClass="com.ibm.btt.base.types.impl.SimplePropertyDescripto
r">

<Converter convTypes="default" 
implClass="com.ibm.btt.base.types.impl.CurrencyConverter">

</Converter>

</Descriptor>

</type>

Implement type validator
A validator ensures that the typed data element conforms to the business rules of its 
binding type. The property descriptor definition of the type specifies the validator. 
If the property descriptor does not specify a validator, all values for the data 
element are valid.

A validator can have validation parameters. For example, a validator for a date 
type checks whether the value to be validated lies within limits defined by 
parameters such as lowerLimit and upperLimit.

Infrastructure developers do not need to implement the validator from scratch. 
BTT provides com.ibm.btt.base.types.impl.BaseValidator as super class of 
all validator implementations. Infrastructure developers can extend the class and 
override validate method.

Below is sample code of validate method implementation:
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 4 ■ Data Type Extension ■ Implement data type extension50
public void validate(TimeZone convertedValue, TimeZoneValidationParamBean params) 
throws DSETypeException {

// TODO Auto-generated method stub

if(convertedValue != null && params.maxoffset != null &&
!params.maxoffset.equals("")){

if (TimeZone.getTimeZone(params.maxoffset).getRawOffset() >
convertedValue.getRawOffset()){

String msg = "validation failed in " + 
this.getClass().getName() + 
“.The offset of TimeZone '" + 
convertedValue.getID() + 
"' should be smaller than '" + 
params.maxoffset + "'";

throw new DSETypeException(DSETypeException.harmless, "", msg);

}

}

if(convertedValue != null && params.minoffset != null &&
!params.minoffset.equals("")){

if (TimeZone.getTimeZone(params.minoffset).getRawOffset() <
convertedValue.getRawOffset()){

String msg = "validation failed in " + 
this.getClass().getName() + 
". The offset of TimeZone '" +
convertedValue.getID() + 
"' should be larger than '" +
params.maxoffset + "'";

throw new DSETypeException(DSETypeException.harmless, "", msg);

}

}

}

Implement type converter
Converters transform business objects to Strings (formatting) and Strings to 
business objects (unformatting).

A converter can have conversion parameters when convert the type to or from 
String. For example, a converter for Date type can have pattern parameter, which 
defines the format of a date String in ‘YYYY-MM-DD’ or ‘MM-DD-YYYY’ or 
other formats.

Infrastructure developers need not to implement converter from scratch. BTT 
provides com.ibm.btt.base.types.impl.BaseConverter as super class of all 
converter implementations. Infrastructure developers can extend the class and 
override format and unformat methods.

public abstract String format(K value, T params, String convType, Locale locale)
throws DSETypeException;
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 4 ■ Data Type Extension ■ Implement data type extension 51
public abstract K unformat(String value, T params, String convType, 
Locale locale) throws DSETypeException;

Below is simple code of implementing the two methods:

public String format(TimeZone value, 
com.ibm.btt.base.types.impl.BaseConverter.FormatParamBeam params, String 
convType, Locale locale) throws DSETypeException {

// TODO Auto-generated method stub
//in the formate of: GMT Sign TwoDigitHours : Minutes
return value.getID();

}

@Override

public TimeZone unformat(String value, 
com.ibm.btt.base.types.impl.BaseConverter.FormatParamBeam params, String 
convType, Locale locale) throws DSETypeException {

// TODO Auto-generated method stub
//in the formate of:    GMT Sign TwoDigitHours : Minutes 
return TimeZone.getTimeZone(value);

}

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 4 ■ Data Type Extension ■ Implement type presentation widget52
Implement type presentation widget
A simple type can be integrated with the BTT XUI Editor. That means, when a 
field in specific type is selected as dataName of TextBox widget, XUI Editor will 
generate specific widget for this type automatically. For example, if a Date type 
field is chosen, a DateTextBox will be generated as presentation widget 
automatically. Infrastructure developers need to implement a presentation widget 
for a simple type. Infrastructure developers need three steps to register and 
implement presentation widget for a new simple data type.

■ Extending BTT JSP tag handler for TextBox widget

■ Modifying bttdojo.tld

■ JavaScript implementation.

Extend BTT JSP tag handler for TextBox widget

To extend the BTT JSP tag handler for a TextBox widget, Infrastructure developers 
need to extend com.ibm.btt.dojo.tag.DojoTextBoxTag class and override 
getWidgetType method. The DOJO widget class for the new type can be returned 
if dataName of TextBox in this type.

Below is the implementation code:

protected String getWidgetType(String type) {

if ("TimeZone".equalsIgnoreCase(type)) {
return "com.ibm.btt.dijit.TimeZoneTextBox";

}
else{

return super.getWidgetType(type);
}

}

Modify bttdojo.tld

After extending the JSP tag handler for the TextBox widget, Infrastructure 
developers need to modify bttdojo.tld file to use the new tag handler for the 
TextBox widget. Infrastructure developers can search tag with name textbox and 
change the tag-class to be the class implemented previously

JavaScript implementation

To implement JavaScript for the new data type as a presentation widget, 
Infrastructure developers need to extend the BTT base class 
com.ibm.btt.dijit.ValidationTextBox and override validator method.

Bean Property Converter

For web applications, most data transferred through http is in text format, such as 
user information, session ID, and even some complex data types are always kept in 
text format. The bean property converter provides typed data element to handle 
the conversion between plain text and Java object.

Infrastructure developers can use the steps that follow to implement the bean 
property converter:

1 Implement bean property converter class.

2 Register bean property converter.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 4 ■ Data Type Extension ■ Data type extension sample 53
Data type extension sample
A data type extension sample is provided to demonstrate how to implement data 
type extension in the BTT framework. In the sample, we will implement a simple 
TimeZone data type to demonstrate all the tasks necessary to extend a data type 
described previously.

TimeZone is a common data type in business. In this sample, we require a 
TimeZone type in the format of ‘GMT+(-)DD’ where DD is two digits with scope 
from 0 to 12. The TimeZone type can have two validation parameters: minoffset 
and maxoffset, which can limit the valid scope of TimeZone data for a specific 
purpose. The procedure that follows describes the primary steps of implementing 
this data type.

1 Define the data type.

a Add the lines below into types.xml.

<type id="TimeZone" implClass="com.ibm.btt.base.DataField">
<Descriptor id="typeDefault"

implClass="com.ibm.btt.base.types.impl.SimplePropertyDescriptor">

<Converter convTypes="default"
implClass="com.ibm.btt.alphatest.types.impl.TimeZoneConverter">

</Converter>

<Validator
implClass="com.ibm.btt.alphatest.types.impl.TimeZoneValidator"/>

</Descriptor>
</type>

2 Implement the TimeZone validator.

a Create new class 
com.ibm.btt.alphatest.types.impl.TimeZoneValidator that 
extends com.ibm.btt.base.types.impl.BaseValidator

b Override the validate method.

c Create the class TimeZoneValidationParamBean in 
TimeZoneValidator, which extends from 
BaseValidator.ValidationParamBean.

d Add the validation parameter maxoffset as a public variable.

e Add the validation parameter minoffset as a public variable.

public static class TimeZoneValidationParamBean extends
BaseValidator.ValidationParamBean{

//in format:    GMT Sign TwoDigitHours : Minutes

public String maxoffset;
public String minoffset;

}

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 4 ■ Data Type Extension ■ Data type extension sample54
3 Create the TimeZoneConverter for the TimeZone.

a Create a new class 
com.ibm.btt.alphatest.types.impl.TimeZoneConverter that 
extends com.ibm.btt.base.types.impl.BaseConverter. 

b Override the format method.

c Override the unformat method.

4 Create the presentation widget.

a Create a new dojo widget for TimeZone with the name TimeZoneTextBox.

b Create a validate method validator: function(/*anything*/value, 
/*dijit.form.ValidationTextBox.    
Constraints*/constraints) 

Note This validates that the input text is in the expected format of 
TimeZone.

c Create a new class 
com.ibm.btt.alphatest.dojo.tag.AlphaTextBoxTag that extends 
class DojoTextBoxTag.

Note After implementing dojo widget for TimeZone type, we need to 
ensure the TimeZoneTextBox can be generated as an input text box 
for TimeZone type data when BTT generates HTML from JSP. By 
default, BTT runtime generates JSP file to HTML file, it uses 
com.ibm.btt.dojo.tag.DojoTextBoxTag to generate tag for 
input data. DojoTextBoxTag can only handle original BTT data 
types such as String, Number, Currency, etc. It can not generate tags 
for new data types. 

d Override the getWidgetType method to generate new widget tag for 
TimeZone data type.

protected String getWidgetType(String type) {

if ("TimeZone".equalsIgnoreCase(type)) {
return "com.ibm.btt.dijit.TimeZoneTextBox";

}
else{
return super.getWidgetType(type);

}
}

5 Update bttdojo.tld to replace DojoTextBoxTag by AlphaTextBoxTag.

a Open bttdojo.tld and identify the DojoTextBoxTag class.

<tag>
<name>textbox</name>
<tag-class>com.ibm.btt.dojo.tag.DojoTextBoxTag</tag-class>

b Change the DojoTextBoxTag to the AlphaTextBoxTag class.

<tag>
<name>textbox</name>
<tag-class>com.ibm.btt.alphatest.dojo.tag.AlphaTextBoxTag</tag-class>
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 4 ■ Data Type Extension ■ Data type extension sample 55
6 Export and copy the data type extension files.

a Run the new Eclipse Application described in ‘Runtime Project Setup’ on 
page 16.

b Export the AlphaWidget project as a plug-in and copy it to the RAD plug-
in folder.

c Export the classes below to a jar file named alphatype.jar.

com.ibm.btt.alphatest.types.impl.TimeZoneConverter
com.ibm.btt.alphatest.types.impl.TimeZoneValidator 
com.ibm.btt.alphatest.dojo.tag.AlphaTextBoxTag

d Copy types.xml and bttdojo.xml from the AlphaWidget project to the 
location of the BTTExtensionWeb project.

e Copy alphatype.jar to WebContent\WEB-INF\lib folder of 
BTTExtensionWeb project.

7 Create the test.

a Create a new operation definition file named datatypeExtensionOp.xml.

b Create an operation named datatypeExtensionOp with an the 
implclass attribute of 
com.ibm.btt.sample.operation.DataTypeExtensionOperation.

c Create a context with an id attribute of dataTypeExtensionCtx and a 
type attribute of oper.

d Create that applicable reference elements for the context. See example 
below.

<datatypeExtensionOp.xml>

<!-- This operation gets from the context a field containing the page
wanted to be shown to the user and places it in the right place to
make Composer understand that this page must be shown. -->

<!-- Operation definition -->
<operation context="dataTypeExtensionCtx" id="datatypeExtensionOp"

implClass="com.ibm.btt.sample.operation.DataTypeExtensionOperation">
</operation>

<context id="dataTypeExtensionCtx" type="oper">
<refKColl refId="dataTypeExtensionData" />

</context>

<kColl id="dataTypeExtensionData">
<refData id="preferTimeZone" />
<field id="timezone" refType="TimeZone"/>
<kColl id="timeZoneList">

<field id="GMT+1" value="GMT+1"/>
<field id="GMT+2" value="GMT+2"/>
<field id="GMT+3" value="GMT+3"/>
<field id="GMT+4" value="GMT+4"/>
<field id="GMT+5" value="GMT+5"/>
<field id="GMT+6" value="GMT+6"/>
<field id="GMT+7" value="GMT+7"/>
<field id="GMT+8" value="GMT+8"/>
<field id="GMT+9" value="GMT+9"/>

</kColl>
</kColl>
<data id="preferTimeZone" refType="TimeZone">

<param value="true" id="isMandatory"/>
<param value="GMT+8" id="maxoffset"/>
<param value="GMT+6" id="minoffset"/>

</data>
</datatypeExtensionOp.xml>
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 4 ■ Data Type Extension ■ Data type extension sample56
8 Create a class 
com.ibm.btt.sample.operation.DataTypeExtensionOperation. that 
extends the class BTTServerOperation and override the execute method with 
the code below.

System.out.println("DataTypeExtensionOperation");
setValueAt(HtmlConstants.REPLYPAGE, "datatypeExtension.jsp");

Note As this is a very simple sample, the class just extends 
BTTServerOperation and overrides the execute method and no 
business logic is implemented.

9 Create Test XUI file.

a Expand the Alpha_Testv7.1 project.

b Right click the xui folder.

c Click New > Other > New XUI File. 

d In File name field, type datatypeExtension.xui.

e Click Finish.

10 Open datatypeExentsion.xui with XUI editor.

11 Click the grey area and open the Properties tab.

12 Click Select Context.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 4 ■ Data Type Extension ■ Data type extension sample 57
13 In popup dialog, select datatypeExtensionOp.xml > 
dataTypeExtensionCtx you created earlier.

14 Click OK.

15 Create the UI.

a In the XUI editor, compose the page as shown below.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 4 ■ Data Type Extension ■ Data type extension sample58
b Click Text Widget.

c Open the Properties tab

d Edit the dataName property.

e Click datatypeExtension > dataTypeExtensionCtx > 
preferTimeZone.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 4 ■ Data Type Extension ■ Data type extension sample 59
f Click Combo widget.

g Open the Properties tab.

h Click datatypeExtension > dataTypeExtensionCtx > timezone field 
for the dataName property.

i Click datatypeExtension > dataTypeExtensionCtx > timezoneList for 
the dataNameForList property.

j Click Save.

16 Right click datatypeExentsion.xui file then click Generate dojo to generate 
JSP. 

17 Open index.xui file with XUI editor. 

18 Add a Link widget,

19 Open the Properties > Action tab.

20 Click Launch Operation for Action Type.

21 Click datatypeExtensionOp for operationId.

22 Click Save.

23 Right click index.xui file and click Generate dojo to generate JSP.

24 Copy TimeZoneTextBox.js from AlphaWidget project to 
BTTExtensionWeb project.

25 Deploy the test application to WAS and run.

26 Open the datatypeExtension.jsp page (see below). 
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 4 ■ Data Type Extension ■ Data type extension sample60
27 Do a check to make sure that the user input is correctly validated.

Note The text box validates the user input String in the format ‘GMT+(-)DD’. 
Furthermore, even user input right TimeZone format, it will also check 
if the value is in the right range (from GMT+6 to GMT+8).
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



61

CHAPTER 5
Chapter 5 Web Services Extension
For Web services invocation, BTT provides both tool and runtime support for 
technical Functional developers to use. The following diagram shows the high-level 
structure of BTT Web services component which could be separated into tool and 
runtime parts. There are also extension capabilities on each part for Infrastructure 
developers to customize project specific behavior during Web services integration.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 5 ■ Web Services Extension ■ Web services Tool Extension62
Web services Tool Extension
The BTT Web services tool provides the one-stop facility to enable the Web 
services integration for a customer project. It consumes WSDL/XSD files as input, 
and then generates the three artifacts required for Web services invocation in BTT 
project:

■ Web services connector

■ Web services self-defined operation

■ Web services client stub classes.

Referring to the usage guide of Web services tool, please find the related content 
from the Multichannel Bank Transformation Toolkit Functional Developer User Guide.

ID Mapping during self-defined operation generation
For Web services integration in a BTT project, technical Functional developers 
needs to produce a self-defined operation to invoke the related server operations. 
As a self-defined operation artifact, the associated data definition is derived from 
the input/output messages of the chosen Web services operations automatically.

All the data in the generated self-defined operation has local accessibility and 
follows the default naming convention. But sometimes for the purpose of high re-
usage rate of global data definition in a BTT application, the automatic data 
generation logic could be in intervened by project extension. Infrastructure 
developers could extend the pre-defined extension point to indicate the data link 
reference between self-defined operation and global data dictionary.

Prepare tool extension environment

For tool extension, Infrastructure developers need to prepare the working 
environment by the following steps. For more details, please refer to the ‘Plug-in 
Project Setup’ on page 14.

1 Create an Eclipse Plug-in project

2 Add the required plug-ins as project dependency

Add extension definition for target extension point

In this step, Infrastructure developers needs to provide specific extension definition 
to the extension point pre-defined in BTT project:

1 Open the file plugin.xml of the working project

2 Click the Extension tab.

3 Click Add.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 5 ■ Web Services Extension ■ Web services Tool Extension 63
4 Browse to the extension 
com.ibm.btt.tools.transaction.editor.wsNameMapping.

5 Click Finish.

Configure extension details

In the details configuration panel of newly added extension definition, 
Infrastructure developers need to provide a implementation class of the interface 
com.ibm.btt.tools.transaction.ws.generator.mapping.name.INameMapp
er. The behavior of this class is to provide a Java map data to describe the relation 
between names of self-defined operation and global data dictionary.

Implement name mapper interface

During the self-defined operation generation, the names defined in WSDL will be 
changed into valid Java names which will be used for the self-defined operation 
data by default. In the name mapper interface, there is an input parameter with the 
type of String set that contains all the changed Java names of selected operations. 
And then, it should give back a map data in which the keys are the Java names and 
the values are the mapped data names of global data dictionary. There is another 
parameter with the type of List that contains all the global data in the application.

public interface INameMapper {
Map<String, String> 

map (Set<String> javaNames, List<DataElement> globalData);
}

The implementation class of the mapper interface should be configured in the 
extension. The Web services tool will then prepare the required parameters and 
launch it. After execution of the extension class, the returned map data will be used 
during the self-defined operation data generation.

Samples overview

In the sample, the extension plug-in will pop-up a dialog for the end user to 
manipulate the data mapping relationship between self-defined operation and 
global data dictionary. As the screen shot below shows, the left column lists the 
names from self-defined operation. The right column provides combo editors for 
each cell from which the global data could be selected.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 5 ■ Web Services Extension ■ Web services Tool Extension64
For the details of the sample, please refer to the extension project 
MappingName.zip. 

The screen below shows the related classes of the extension.

■ NameMapperExt. This is the implementation class of the interface registered for 
the extension point. It performs the model creation and launches the dialog for 
data manipulation.

■ NameMappingModel. This is the data model of the extension application, which 
contains the global data and the names from Web services operation. The 
manipulation result is also stored in this model class.

■ MapperDialog. This is the main UI part of the extension application which 
contains a table to show names and accept manipulations. This dialog box is a 
popup during the extension execution.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 5 ■ Web Services Extension ■ Web services Tool Extension 65
■ NameMappingContentProvider and NameMappingLabelProvider. These 
two classes are used for the table shown in dialog box to interact with the data 
model. The main purpose for them is to show the data model in the table.

■ NameMappingColumnLabelProvider and NameMappingEditingSupport. 
These two classes are used for the right column to provide the combo cell 
editor and related editing support.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 5 ■ Web Services Extension ■ Web services Runtime Extension66
Web services Runtime Extension
BTT Web services runtime follows the principles of the BTT programming model, 
which makes use of BTT core concepts (operation, format, service) to resolve the 
Web services invocation. The learning curve is, therefore, shorter for Infrastructure 
developers.

Web services Runtime Overview
At runtime part, BTT invokes Web services by means of the work of these three 
primary runtime components. For project-specific purpose, Infrastructure 
developers could extend their own runtime components used for Web services 
runtime.

Web services Connector

Web services connector communicates with the Web services provider. It covers 
the implementation details such as creating a service delegate object, reflecting the 
requested operation, configuring the invocation properties. In the BTT product, 
there are two different sets of code to support the JAX-RPC and the JAX-WS 
specifications. The latter is recommended by default because it is compatible with 
the former one.

The Web services connector has implemented a BTT service interface. Developers 
could use it like a standard BTT service object. The Web services connector 
instance could be configured by XML and instantiated for use standalone by code 
like readObject(String serviceName). The Web services connector could be 
created and edited by the BTT Transaction Editor.

Web services Access Operation

In a BTT application, developers should use Web services Access Operation to 
invoke a Web services. Web services Access Operation extends the standard BTT 
Operation. In its execution logic, it communicates to Web services with the help of 
Web services connector and then processes the input and output message data by 
Web services mapper.

Web services Mapper

The data transferred between Java Web services and client is quite different from 
the BTT Context and Data. To bridge the gap between the two different data 
systems, Web services mapper is used closely with Web services Access Operation 
to change between BTT XML based data and Web services Java Beans.

Extend WS Handler and WS Connector
Developers could use handlers to inject additional logic into the message flow 
during Web services invocation, for a variety of purposes such as capturing and 
logging information and adding security or other information to a message.

The handlers registered to application level are supported by both JAX-RPC and 
JAX-WS. But for JAX-WS, handlers could also be plugged into runtime by 
annotation or code. The handlers registered into runtime will be used by a handler 
resolver that is provided by BTT Web services runtime.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 5 ■ Web Services Extension ■ Web services Runtime Extension 67
The extension for WS handlers is always implemented together with WS connector 
extension. So this chapter uses a sample to cover the extension guide for both of 
these two components.

Samples Overview

In the sample, there is guide about how to print the SOAP messages transferred 
during the invocation. Actually, Infrastructure developers could follow similar steps 
to manipulate the inbound and outbound messages, such as adding SOAP header 
or encrypting messages.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 5 ■ Web Services Extension ■ Web services Runtime Extension68
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



69

CHAPTER 6
Chapter 6 Channel Policy 
Management and 
Extension
Channel policy management provides bank customers with unified business data 
integration across different channels, along with a unified user experience cross 
channel. With channel policy management, developers can rapidly develop multi-
channel business integration solution, and rapidly change and deploy business rules 
in production. Furthermore, the channel policy implementation is loosely coupled 
with specific transaction logic.

BTT provides the embedded channel policy management mechanism in the BTT 
Channel layer. The channel policy can be used to handle in two levels:

■ Channel level: In this level, all requests can be validated by channel policy. 
For example, to check if a user has the privilege to use Internet banking 
channel or if the user can use a specific operation in the Internet banking 
channel.

■ Operation level: In this level, when a specific transaction or operation is 
invoked by a user, channel policy can be used to check the authorization limits 
to this user. For example, when a user is using the Internet banking channel to 
transfer money in account, the channel policy can be used to check the 
maximum amount money the user can transfer on the Internet banking 
channel.

There are two primary components in BTT channel policy management 
framework:

■ Channel Policy Handler: is used to extract policy input parameters from the 
channel context and parse the policy check result from the rule provider 
service. As parameters and policy result are project specific, there is no default 
implementation. Infrastructure developers need to implement their own 
handler for a specific project.

■ Rule Provider Service: provides a common interface to access the rule 
engine. Two pre-built rule providers are implemented as BTT services: ILog 
Connector Service and Java Code Rule Provider Service. Infrastructure 
developers can extend rule provider service to support any other third part rule 
engine.

The figure below shows the logic view of the BTT channel policy component.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 6 ■ Channel Policy Management and Extension ■70
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 6 ■ Channel Policy Management and Extension ■ Channel level policy management 71
Channel level policy management

Implement channel policy handler
BTT provides an abstract channel policy handler 
com.ibm.btt.channel.AbstractChannelPolicy to handle policy in the 
channel level. The doCheck method in AbstractChannelPolicy provides a 
default implementation to use with the defined rule service to do channel level 
policy management. Infrastructure developers can override the method as 
necessary.

Infrastructure developers should override the following two methods in their 
handler implementation:

protected Map<String, Object> getInputParameter(ChannelContext ctx)

The method is used to construct the input parameters for the doCheck method 
using the data from channel context.

protected PolicyResult processResult(Map<String, Object> result)

The method is used to parse the result returned from the rule provider service.

The com.ibm.btt.channel.PolicyResult is the return type of processResult 
method. It includes the execution result of policy check. If the check passes, the 
BTT channel provider will continue the request processing. Otherwise, the BTT 
channel driver will throw the 
com.ibm.btt.channel.ChannelPolicyException. The messages in 
PolicyResult are used to keep the messages generated during rule check.

The following is sample policy handler implementation:
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 6 ■ Channel Policy Management and Extension ■ Channel level policy management72
Define rule provider service
The rule provider is implemented as a BTT service. As with other BTT services, it 
needs to be defined in service.xml file. BTT provides two pre-built rule provider 
services:

■ ILOG connector service

IBM ILOG can be used as rule engine to store channel management policy. The 
service is used to connect ILOG to the access channel policy defined in it. The BTT 
ILOG connector service supports the following attributes:

The following is a sample service definition in service.xml:

<com.ibm.btt.channel.ruleprovider.ilog.ILogRuleProviderService
id="checkTransferAmountILogRule"
ruleID="/checkChannelRuleApp/BTTChannelRules" />

■ Java Code Rule Provider Service

BTT provides 
com.ibm.btt.channel.ruleprovider.java.JavaCodeRuleProviderService 
as base the class for Infrastructure developers to implement a rule provider service 
in Java Code. Infrastructure developers need to extend the 
JavaCodeRuleProviderService and override checkRule method.

public Map<String, Object>    checkRule(Map<String, Object>    params)

The method is used to do a check of business policy rules and decides if the request 
can be accepted.

The following is a sample implementation of JavaCodeRuleProviderService. In 
it, any transfer amount more than 10000 will be rejected.

Name Description

id The unique id of this service

ruleID The rule id defined in ILOG accessed by service.

mode The mode of accessing ILOG. There are two possible 
values: J2EE, J2SE and WebService. The default value is 
J2EE

WSClientBeanName The name of the class to access ILOG when mode is 
WebService. The class is generated by 
WSClientBeanName.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 6 ■ Channel Policy Management and Extension ■ Channel level policy management 73
Furthermore, Infrastructure developers can implement their owner policy provider 
service such as supporting other third part rule engines. To implement a policy 
provider service, Infrastructure developers need to extend the abstract class 
com.ibm.btt.base.Service and implement the 
com.ibm.btt.channel.ruleprovider.IBTTRuleProvider interface.

Configure policy for channels
After implementing the channel policy handler and defining rule provider service, 
Infrastructure developers need to configure the handler and service in btt.xml for 
the specific channel. The following is a sample configuration for an html channel:

<kColl id="html">
<field id="encoding" value="UTF-8" />
<field id="cookies" value="true" />
<field id="runInSession" value="true" />
<field id="requestHandler" 

value="com.ibm.btt.cs.html.AjaxHtmlRequestHandler" />
<field id="presentationHandler"

value="com.ibm.btt.cs.html.AjaxHtmlPresentationHandler" />
<field id="channelPolicyHandler"
value="com.ibm.btt.sample.channelpolicy.UserSecurityChannelPolicyHandler"/>
<field id="ruleService" value="UserSecurityProfileRuleService" />

</kColl>

Exception handling
When the channel policy check rejects (PolicyResult.accept==false) the 
request, the BTT Channel driver throws 
com.ibm.btt.channel.ChannelPolicyException. By default, the BTT 
presentation handler returns the exception to the client end. But the application 
may want to return a more user friendly error message to the client end. In this 
case, Infrastructure developers need to extend the channel presentation handler to 
handle the exception.

For example, in the case of the html channel, the default presentation handler is

com.ibm.btt.cs.html.AjaxHtmlPresentationHandler

or

com.ibm.btt.cs.html.HtmlPresentationHandler.

To handle exception with application needs, Infrastructure developers need to 
extend either of the presentation handlers above and override handleException 
method.

public void handleException(ChannelContext channelContext,
Exception e)

In the method, the presentation handler handles any exception thrown while 
processing the request and navigates the user to the correct error page with the 
applicable message. The following is an example of handleException method 
implementation that demonstrates how to handle a ChannelPolicyException.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 6 ■ Channel Policy Management and Extension ■ Channel level policy management74
To apply the new presentation handler, Infrastructure developers need to configure 
this presentation handler in btt.xml for the channel.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 6 ■ Channel Policy Management and Extension ■ Operation level policy management 75
Operation level policy management

Implement OpStep for operation level policy
To support operation level policy management, BTT provides 
com.ibm.btt.channel.AbstractPolicyOperationStep as a base class for 
Infrastructure developers to extend. The execute method in 
AbstractPolicyOperationStep provides a default implementation which uses 
the rule service to check the operation level policy. Infrastructure developers can 
extend it based on the application needs. Meanwhile, Infrastructure developers 
should implement the following two abstract methods:

protected abstract Map<String, Object> getInputParameter()

The method is used to construct the input parameters to execute the method using 
the data from the operation context.

protected abstract int processResult(Map<String, Object> result)

The method is used to parse the result returned from the rule provider service. The 
return value of the processResult method is used to control the state transition 
between opSteps.

The following is a sample OpStep implementation class that demonstrates how to 
implement operation level policy.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 6 ■ Channel Policy Management and Extension ■ Operation level policy management76
Configure operation
After extending the AbstractPolicyOperationStep, Infrastructure developers 
need to configure the related operation to use the opStep. In the operation 
definition, Infrastructure developers need to configure an opStep. The implClass 
should be the class that extends from AbstractPolicyOperationStep. The 
refRuleService should be the rule provider service defined in service.xml. The 
service will be used by opStep as the rule provider service. The following 
demonstrates how to configure an operation to use opStep for operation level 
policy management.

<operation id="checkLimitOp" implClass=
"com.ibm.btt.sample.transfer.operation.CheckTransferLimitOperation">

<opStep id="initTransferOpStep" refRuleService="checkLimitRuleService"
implClass="com.ibm.btt.sample.transfer.operation.CheckLimitOpStep"
on0Do="return"/>

</operation>
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 6 ■ Channel Policy Management and Extension ■ Channel policy sample 77
Channel policy sample
The BPRuntimeTest.war file is provided as a channel policy sample. The sample 
implements the real case that demonstrates how to use BTT Channel Policy. The 
guide shows the code and configuration related to the channel policy and the 
extension point.

How to run the sample
1 Deploy the WAR file to Tomcat or WAS. 

2 Type the URL http://localhost:8080/BPRuntimeTest/EstablishSession to 
start the sample.

3 If you click Start Information Submission, the channel policy will not let you 
run this transaction. The page below is displayed.

4 If you click Start Account Transfer, the channel policy lets you run this 
transaction. The sample implements a simple rule to the check transaction 
limit. If the amount is over 10000, it displays an error page.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 6 ■ Channel Policy Management and Extension ■ Channel policy sample78
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



79

CHAPTER 7
Chapter 7 Process Editor Extension
BTT provides a Processor Editor for developers to visually construct a BTT flow. 
The Processor Editor is shown in the Processor tab of BTT Transaction Editor. 
Developers can compose a BTT flow by dragging and dropping different kinds of 
states from the palette and connecting them with transitions. The following figure 
shows a flow composed with the Processor Editor.

Furthermore, the BTT Processor Editor supports two kinds of editing modes. 
According to the project requirement, Infrastructure developers could customize 
the default mode of BTT Processor Editor.

■ Compatibility Mode: In this mode, developers can operate on all the possible 
properties of a state or a transition.

■ Default Mode: In this mode, the property editor of a state or transition is 
simplified. A developer with less BTT knowledge could also use the Processor 
Editor to compose the BTT flow.

BTT Transaction Editor stores the BTT flow in a file with the extension of 
transaction, which describes a generic, channel-independent flow. To run this flow 
in the runtime environment, the transaction file needs to be generated into a BTT 
XML file (Select the option Transaction Editor from the context menu of 
transaction file, then choose the option Generate BTT Transaction XML).

This transaction file is a channel-neutral flow definition, which will be generated 
based on different channel transaction generators. Actually, each BTT channel has 
its own generator which is defined via the extension point 
com.ibm.btt.tools.transaction.editor.generator. For example, a BTT 
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■80
HTML channel has its own generator named 
com.ibm.btt.tools.transaction.generator.xml.GeneratorFactory. In 
case several generators are defined, developers could choose the preferred one by 
choosing Window > Preferences > Transaction Editor > Generator option.

A generator can work with one or more mapping definition files, which contain the 
tag mappings from PageState to htmlState, property mappings from page to 
typeIdInfo and the logic to be injected into the generation process. In case there are 
several mapping definition files, Infrastructure developers should make sure they 
have not defined overlapped tags set. Otherwise, there is no guarantee about which 
mapping rules will be taken into account.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Extend processor editor object 81
Extend processor editor object
To create a new Processor Editor object, the Infrastructure developers need to 
define it in an xml definition file and then register this definition into the Palette 
Registry as a plug-in extension. After that, the object will be shown in the palette of 
the Processor Editor, and can be dragged and dropped into the canvas of Processor 
Editor. In the following sections, we will describe how to create a new processor 
editor object in more details.

Create configuration file for palette object
BTT defines a palette object by an xml definition file which describes how this 
object will be shown in the palette and the canvas of the BTT Processor Editor, 
which properties of the object can be edited, which property editor will be used for 
the properties. The following sections will describe the tags of an object 
configuration file in more details.

There are two types of palette objects: state object and transition object. For a state 
object, there are three kinds of tags used in its configuration file:

Appearance

This tag defines how to display the extended state object in the palette. The table 
below shows the available attributes for an Appearance tag.

Properties tag of state

This tag lists all properties of a state object. It needs to contain one or more 
Property tags.

Attribute Table Description

gradient true or false

fontColor This attribute is used to defined the font color in RGB, such 
as: fontColor="0,0,0"

backgroundColor This attribute is used to defined the background color in 
RGB, such as: backgroundColor="255,216,1"

font This attribute is used to indicate the font style of the state 
shown in palette, such as: font="Arial-regular-10"
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Extend processor editor object82
Property tag of state

The tag describes how the Processor Editor is to display and edit a property. The 
table below shows the attributes for a Property tag.

Below are predefined property edit rules:

Below is an example of state object configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<state xmlns="http://btt.ibm.com/StateSchema" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://btt.ibm.com/StateSchema StateSchema.xsd ">

<appearance backgroundColor="254,46,154" font="Arial-italic-20" 
fontColor="0,0,0" gradient="true"/>

<properties>

Attribute Description

name The property name identifier.

defaultValue It corresponds to the property value by default.

hidden It specifies if the property must or not be displayed. Possible 
values are: true or false. If it is true, the attributes described next 
don’t apply. The default value is false.

editRule It is the property editor that will be used by the user to enter the 
property value. It should be the same as any rule id in table 7-3. 
If it is not specified, a default editor is assigned

description It contains the text to be used as tooltip.

required It indicates if the property is mandatory (user must enter a value) 
or not. Possible values are: true or false. Default value is false.

Rule ID Description

Boolean For boolean chosen rule

XValidate For XValidate property editor rule

Context For Context chosen rule

ConditionAdjust For Condition adjust rule

OpStepAction For OpStep action chosen rule

OpStepCondition For OpStep condition rule

Operation For Operation chosen rule

EventId For Event Id chosen rule

PageSelection For Page chosen rule
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Extend processor editor object 83
<property name="Page" displayName="Page Name" 
defaultValue="" hidden="false"
required="true" description="Page file path" 
editRule="PageSelection" />

<property name="Back Allowed" defaultValue="False" hidden="false"
required="false" 
description="Specifies the possibility to use the back button from 

the navigator" editRule="Boolean" />
<property name="id" defaultValue="" hidden="true" required="false"

description="id" editRule="" />
</properties>

</state>

For a transition object, there are three tags in its configuration file:

Appearance tag of transition

It defines how to display a transition object in palette and canvas. The table below 
shows the attributes for an Appearance tag.

Transition object configuration file should include Properties and Property tags 
which are the same as state object described previously.

Below is an example of transition configuration:

<transition xmlns="http://btt.ibm.com/TransitionSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://btt.ibm.com/TransitionSchema TransitionSchema.xsd ">

<appearance lineColor="0,0,0" lineWidth="1" lineStyle="Solid"
arrowTypeStyle="SolidArrow" font="Arial-regular-10" 
fontColor="0,0,0"/>

<properties>
<property name="Event" hidden="false" required="true" 

defaultValue="" editRule="EventTransitionBeta"/>
<property name="Input Data Format" required="false"

description="%InputFormat" editRule="MapperFormat"/>
<property name="Output Data Format" required="false"

description="%OutputFormat"   editRule="MapperFormat"/>
<property name="Skip Validation" defaultValue="false"

description="%TransValidated" editRule="Boolean"/>
<property name="id" defaultValue="" hidden="true" required="false" />

</properties>
</transition>

Register palette object

To register customized palette object to the Processor Editor, Infrastructure 
developers need to add an extension point for this object in the plugin.xml file of 
his extension plug-in. To register the object, do the steps that follow.

Attribute Description

lineColor Color in RGB. For example, 255,255,255. Default value is 
0,0,0.

lineWidth Line width in pixel. Default value is 1.

lineStyle Possible values are: Solid, Dash, DashDotDot, DashDot, Dot, 
Double. Default value is Solid.

arrowTypeStyle Possible values are: None, OpenArrow and SolidArrow. 
Default value is SolidArrow.

font The font.

fontColor Color in RGB. For example, 255,255,255.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Extend processor editor object84
1 Open plugin.xml file.

2 Click the Extensions tab.

3 Click Add.

4 In Extension Point Filter field, type com.ibm.btt.

5 Click com.ibm.btt.tools.transaction.dominate.palette.

6 Click Finish.

7 Right click com.ibm.btt.tools.transaction.dominate.palette then click 
New > state or New > transition to create the applicable object.

8 In Extension Element Details dialog box, type the applicable information.

■ name field requires inputting the name of the object. It serves as ID, so should 
be unique.

■ label field requires inputting the display name of the object, the label will be 
shown in palette as object name. It supports NLS.

■ smallIcon field requires selecting an image to display the object in palette of 
Processor Editor. Image in 16x16 pixels is recommended as it is consistent with 
existing BTT objects.

■ largeIcon field requires selecting an image to display the object in the canvas 
of the Processor Editor. Image in 32x32 pixels is recommended as it is 
consistent with existing BTT objects.

■ config field requires inputting file name of object configuration xml file 
described in ‘Create configuration file for palette object’ on page 81.

■ description field describes the function of the state, which will be shown in 
palette when cursor moves over the icon in palette.

■ stateParser field indicates the class that is used to parse events of the state 
automatically. 

Below is an example:
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Extend processor editor object 85
Create and register object mapping

After Functional developers complete composing the XUI file, they select 
Transaction Editor->Generate BTT Transaction XML function and the BTT 
tool will automatically generate BTT transaction xml file for this transaction file. In 
order to generate proper xml tag for the customized processor object, Infrastructure 
developers need to create a new object mapping file and register it as plug-in 
extension.

Create object mapping file

In a processor object mapping file, it should include one mappings tag. The 
mappings tag should contain one or more tag-mapping elements. Each tag-
mapping tag can contain property-mapping element.

The figure below demonstrates the relationship:

Attributes of tag-mapping tag: 

Attributes of property-mapping tag:

Predefine rules: HTMLFinalIdRule

Attribute Description

from The tag name in .transaction file.

to The tag name in .xml file

Attribute Description

from The tag name in .transaction file. Required

to The tag name in .xml file. Required

Rule The id of property conversion rule to convert the tag. Predefined 
rule is described in the table HTMLFinalIdRule.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Extend processor editor object86
Below is a sample of object mapping file:

<mappings xmlns="http://btt.ibm.com/MappingsSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://btt.ibm.com/MappingsSchema MappingsSchema.xsd ">

<tag-mapping from="ClientPromptState" to="htmlPromptState">
<property-mapping from="id" to="id" rule="ClientPromptRule" />

</tag-mapping>
</mappings>

Register object mapping

1 Click the Extensions tab of plug-in file.

2 Click Add.
The New Extension dialog appears.

3 Click com.ibm.btt.tools. transaction.editor.generator.

4 Click Finish.

5 Right click com.ibm.btt.tools.transaction.editor.generator then click 
New > generator.

6 In the Extension Element Details dialog box, type the applicable 
information.

■ file: put the mapping file defined previously.

■ target: type Default Generator.

Create and register property generation rule

When generating a flow xml file, the default rule is to use to String to replace from 
String simply. But there are more complex conversion rules when generate flow 
xml file. 

Rule ID Description

HTMLFinalIdRule The rule of converting final state id from neutral flow 
file to html channel flow file

HTMLOperationIdRule The rule of converting operation state id from neutral 
flow file to html channel flow file

HTMLPageIdRule The rule of converting page state id from neutral flow 
file to html channel flow file

HTMLSubflowIdRule The rule of converting subflow state id from neutral 
flow file to html channel flow file

HTMLProcessorIdRule The rule of converting processor id from neutral flow 
file to html channel flow file

TransitionIdRule The rule of converting transition id from neutral flow 
file to html channel flow file

TransitionTargetRule The rule of converting transition target from neutral 
flow file to html channel flow file
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Extend processor editor object 87
BTT implements several pre-defined rules to convert existing processor objects. 
When Infrastructure developers create new object, it is very possible for them to 
create new conversion rule to generate xml lines for the object. To create a new 
generation rule, Infrastructure developers need to create a Java class to implement 
the rule, and then register the rule as plug-in extension.

To create a generation rule class, Infrastructure developers need to extend the BTT 
abstract class com.ibm.btt.tools.transaction.extend.generator.Rule and 
override the process method. In the process method, Infrastructure developers 
can manipulate the target tag object as their needs such as adding new attribute and 
changing attribute an name or value.

public void process(Taggable object, Map<String, String> attributes, 
PropMapping mapping, String value)

After creating a new rule class, Infrastructure developers need to register this rule in 
plug-in.

1 Click the Extensions tab of plug-in file

2 Right click com.ibm.btt.tools. transaction.editor.generator then click 
New > rule.

3 In the Extension Element Details dialog box, type the applicable information

■ name: type the name of rule as unique identifier

■ class: put the implementing class.

Implement state in runtime

During the flow execution process at runtime, each state composed in this flow will 
be represented as a Java object. When the flow enters a state, the Java object 
corresponding to this state will be initiated and activated by processor.

After creating the palette object and its mapping rules for the Processor Editor, 
Infrastructure developers need to implement a Java class corresponding to this 
object. The class should extend class DSEState or its derived classes such as 
DSEHtmlState, and override the two methods that follow to implement state 
specific logic.

public Object initializeFrom(Tag aTag) 
throws java.io.IOException,com.ibm.btt.base.DSEException

This method is invoked when the processor initializes the state from tags. As the 
state may have several properties, Infrastructure developers need to initiate these 
properties from tag attributes when the state is initiated. The following code snippet 
is the method implementation sample:
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Extend processor editor object88
public void activate() throws DSEInvalidArgumentException, DSEProcessorException

This method is invoked when the processor actives this state. Infrastructure 
developers need to override this method to implement state specific logic. The 
following code snippet is the method implementation sample:

Create and register global function

Global function is used in the Condition state of the Processor Editor to define 
expression for different conditions. BTT implements several functions by default. 
Infrastructure developers may have a requirement to extend BTT pre-defined 
functions to implement project specific functions. An plug-in extension point is 
provided for Infrastructure developers to implement project specific functions.

Infrastructure developers need first create a function definition file to declare the 
functions that will be implemented. The following is an example of function 
definition file.

<functions>
<function name="concat" returnType="String" description="" >

<parameters>
<parameter name="string1" description="%concatString1" type="String" />
<parameter name="string2" description="%concatString2" type="String" />

</parameters>
</function>
<function name="length" returnType="Integer" description="" >

<parameters>
<parameter name="string1" description="%descString1" type="String" />

</parameters>
</function>

</functions>
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Extend processor editor object 89
Infrastructure developers then need to create a Java class to implement the 
declared functions. The class contains the set of implemented static methods 
corresponding to the declared global functions.

Lastly, the Infrastructure developers need to register the definition file and Java 
class as an plug-in extension point called 
com.ibm.btt.tools.transaction.dominate.palette.globalFunctions. In 
the Extension Element Details dialog, type the following information:

class: This is the global functions declaration class.

config: This is the global functions definition file.

Create editor object by dragging items

The Processor editor supports a drag-and-drop operation to the XUI page of flow 
and operation and it will create Page state for XUI page dropping, SubFlow state 
for flow and Operation state for operation. Meanwhile, you can provide your own 
drag-and-drop code to extend the Processor editor to accept another type drop as 
well override the default drag and drop support on page, flow and operation drop.

The extension point is com.ibm.btt.tools.transaction.diagram.fileDrop.

Attributes for the drag-and-drop handler are below:

class: The implementations of the interface 
com.ibm.btt.tools.transaction.diagram.file.drop.IDiagramEditorDro
pFileHandler. It defines two methods: accepts and parseDroppedFile - the 
former one is used to check whether the handler can accept the dropped item and 
the latter defines the detail action on drop. Recommended to inherit from 
com.ibm.btt.tools.transaction.diagram.file.drop.DefaultDiagramEdi
torDropFileHandler.

priority: The priority of the handler. On dropping an item, the Processor editor 
will find the handler with highest priority to treat the current drop action. The valid 
values are: low | medium | high.

If you want to override the default actions on page/flow/operation drop action, add 
a drag-and-drop handler with medium or high priority since the priority of the 
default handler is low.

Samples:

FlowEditorJSFileDragAndDropHandler and 
FlowEditorXUIFileDragAndDropHandler are two customized drag-and-drop 
handlers registered to the Processor editor which lets the javascript file(.js) create a 
new customized JSSate state in the processor and override the default XUI drop 
by adding a comment to the page state created.

The implementation stuffs of this sample are in Drop4Extension project. The table 
below has a list of stuffs for this sample:
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Extend processor editor object90
NLS support

National Language Support (NLS) is provided by the Processor Extension Editor. 
The attributes below are supported for NLS:

■ label (in State and Transition palette extensions) 

■ description (in State and Transition palette extensions) 

■ displayName (in state and transition configuration files) 

■ description (in state and transition configuration files).

The definition of a NLS string must have the % prefix. At the same time, the pair 
<string key=string value> must be defined in the plugin.properties file.

The following is an example of NLS String definition.

……

<property name="Page" displayName="%PageName" defaultValue="" 
hidden="false" required="true"
description="%PagePath" editRule="PageSelection" />

…..

Extend runtime processor

After a processor flow is composed by the Processor Editor, the flow can be 
executed at runtime. Infrastructure developers can also change the processor 
runtime behavior according the project requirement. For example, by default, the 
BTT processor does not process errors or exceptions that occur in a state at 
runtime. When there is an error in a state during processor execution, an error page 

Stuff Name Description Reference Materials Location

JSState.xml State configuration file ‘Create configuration file 
for palette object’ on 
page 81

palette folder in 
Drop4Extension project

Info16.PNG and 
Info32.PNG

Icons used to show State 
in Processor Palette and 
Canvas

‘Register palette object’ 
on page 83

icons folder in 
Drop4Extension project

JSStateMapping.xml Palette object mapping 
file

‘Create and register object 
mapping’ on page 85

config folder in 
Drop4Extension project

JSStateRule.java Property generation rule 
for JSState

‘Create and register object 
mapping’ on page 85

src/com/ibm/btt/tools/dr
op4extension./ransaction.
/generator/ule folder in 
Drop4Extension project

FlowEditorXUIFileDrag
AndDropHandler.java

Drag-and-drop 
implementation class in 
runtime

src/com/ibm/btt/tools/dr
op4extension/transact 
ion/presentation folder in 
Drop4Extension project

FlowEditorJSFileDragAn
dDropHandler.java

Drag-and-drop 
implementation class in 
runtime

src/com/ibm/btt/tools/dr
op4extension/transaction
/presentation folder in 
Drop4Extension project
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Extend processor editor object 91
will be returned to end user. Application developers may want to provide more 
friendly interactions with end user (such as to prompt user decide continue or 
cancel the flow). They need to define a state to handle a specific error. Meanwhile, 
they need to define error event and transition. In this case, application developers 
have to spend some effort to define error handling states, events and transitions for 
each processor. If application developers want to implement implicit error 
handling at runtime for all processors, they can extend the default BTT processor at 
runtime.

As the BTT processor at runtime is channel specific. The following section gives 
information on how to extend the BTT html processor at runtime. For other 
channels, they can be extended in the same way.

How a flow processor works

The following process describes how a flow processor handles a flow through states 
according to the definitions until the process reaches a final state:

1 The processor externalizer instantiates a given instance of the processor from 
its external definition. The behavior of the processor externalizer is the same as 
other BTT externalizers to create an object.

2 The externalizer searches for the name of the flow processor.

3 It obtains the flow processor class from the configuration file.

4 It sends the initializeFrom(Tag aTag) method to the flow processor instance to 
initialize it according to the definitions embedded in the tag.

5 When the toolkit initializes an instance of a flow processor, it caches in memory 
all of the possible states along with their actions, transitions, and data without 
actually instantiating them. Objects from these definitions are only created at 
runtime when they are required during the life cycle of the process.

6 The processor externalizer implements an object cache to significantly improve 
performance.

7 The toolkit executes the processor instance. The process handled by the flow 
processor starts in its initial state and follows a defined path until it enters one of 
its final states.

8 When the processor enters a state, the state registers with notifiers as being 
interested in any events specified in the state's transitions. The notifiers can be 
any notifier available in the context or any of the actions being executed.

9 The processor synchronously executes the entry actions of the state in the order 
in which they appear in the external definition of the state. If an entry action 
causes an event to fire and the event belongs to a transition defined for the 
state, the processor places the event in an internal queue to synchronize the 
actual handling of events.

10 After executing the entry actions, the flow processor checks the event queue 
and executes any events it finds there. If there are no events in the queue, the 
processor waits in the state for a triggering event. The use of the event queue to 
synchronize events does not prevent actions and guard conditions from having 
the opportunity to handle an event fired by a notifier while the processor is 
executing entry actions. The processor provides the event to them without 
losing the original event data.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Extend processor editor object92
11 To execute an event, the flow processor executes the actions for the event's 
transition after evaluating the guard conditions for each action. Depending on 
the results of evaluating the guard conditions and applying flow modifiers, the 
flow processor performs the exit actions defined for the state and then enters 
the defined target state to advance the process.

Extend flow processor

The DSEProcessor class extends the DSENotifier class and implements the 
Processor and Externalizable interfaces. The class diagram is shown as below:

Infrastructure developers need to extend 
com.ibm.btt.automaton.htmlDSEHtmlProcessor class to customize flow 
processor behavior for the HTML channel or extend 
com.ibm.btt.automatonDSEProcessor class for other channels.

After extending the BTT default processor implementation, Infrastructure 
developers need to register the new implementation in the class table of btt.xml. 
For example, for the HTML channel processor, Infrastructure developers need to 
replace the original implementation class with the new one. The following is an 
example:

Change definition from:

<field id="htmlProcessor" value="com.ibm.btt.automaton.html.DSEHtmlProcessor" />

to

<field id="htmlProcessor"
value=“com.ibm.btt.alphasample.automation.html.AlphaHtmlProcessor" />

After that BTT will use the extended process class to handle the flow in runtime.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Processor editor extension sample 93
Processor editor extension sample
Two samples are provided to demonstrate how to implement Processor Editor 
extension in BTT framework.

■ ClientPromptState sample: The sample demonstrates how to implement a 
Processor Editor palette state object and how to integrate it into the Processor 
Editor.

■ AlphaHtmlProcessor sample: The sample demonstrates how to customize 
the BTT html processor behavior in runtime.

ClientPromptState sample
The ClientPromptState is a state object of the Processor Editor. It is designed to 
show prompt information in a web page to the end user during execution of the 
flow processor. It gives the end user options to continue or cancel the flow.

The example of a ClientPromptState in runtime is shown as below:

In this sample, primary Processor Editor object extension tasks are covered to help 
Infrastructure developers have overall understanding of implementation quickly. 
Below are list of tasks covered in this sample:

■ Creating State object configuration file.

■ Registering state as a plug-in extension point.

■ Creating State object mapping file.

■ Registering State object mapping as a plug-in extension point.

■ Implementing property generating rule

■ Registering property generating rule as a plug-in extension point.

The implementation stuffs of this sample are in two projects: AlphaSampleWidget 
project and BTTExtensionWeb project. ‘Environment Preparation’ on page 13 
describes how to create the two projects. Below are list of stuffs for this sample:

Stuff Name Description Reference Material Location

ClientPromptState.xml State configuration file ‘Create configuration file 
for palette object’ on 
page 81

palette folder in 
AlphaSampleWidget 
project

Info16.PNG and 
Info32.PNG

Icons used to show State 
in Processor Palette and 
Canvas

‘Appearance tag of 
transition’ on page 83

icons folder in 
AlphaSampleWidget 
project

transactionmapping.xml Palette object mapping 
file

‘Create and register object 
mapping’ on page 85

config folder in 
AlphaSampleWidget 
project
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Processor editor extension sample94
AlphHtmlProcessor sample
The AlphaHtmlProcessor extends the BTT HTML channel processor to 
demonstrate how to handle implicit events. With this processor, developers need 
not to define any state or transition in processor to handle user prompt event. The 
processor will handle the user prompt event implicitly.

For example, the following figure shows a simple traditional account transfer flow. 
If an error occurs (such as the amount is more than daily transferring limit) during 
the transferProcessOp process account transfer request, a page will be returned to 
user ask for input again or cancel the process.

But with AlphaHtmlProcessor, developers do not need to userPrompt and 
FinalNotOk state. The processor will handle implicitly. The following figure shows 
flow using AlphaHtmlProcessor.

In this sample, primary runtime processor extension tasks will be covered.

The implementation stuffs of this sample are in two projects: AlphaSampleWidget 
project and BTTExtensionWeb project. ‘Environment Preparation’ on page 13 
described how to create the two projects. Below are list of stuffs for this sample:

The implementation stuffs of this sample are in BTTExtensionWeb project. Below 
are list of stuffs for this sample:

ClientPromptRule.java Property generation rule 
for ClientPromptState

‘Register palette object’ 
on page 83

src/com/ibm/btt/alphasa
mple/transaction/generat
or/rule folder in 
AlphaSampleWidget 
project

HtmlPromptStat.java State implementation 
class in runtime

‘Create object mapping 
file’ on page 85

src/com/ibm/btt/alphasa
mple/automation/htmlfol
der in BTTExtensionWeb 
project

Stuff Name Description Reference Material Location
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Processor editor extension sample 95
Stuff Name Description Reference Material Location

AlphaHtmlProcessor.java Java class for runtime 
processor extension

‘AlphHtmlProcessor 
sample’ on page 94

src\com\ibm\btt\alphasa
mple\automation\htmlfol
der in BTTExtensionWeb 
project

flowForProcessorExtensi
on.transaction

Sample flow of using 
AlphaHtmlProcessor

src\definitions\processors 
folder in 
BTTExtensionWeb 
project
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 7 ■ Process Editor Extension ■ Processor editor extension sample96
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



97

CHAPTER 8
Chapter 8 Global Function Extension
BTT global functions provide common utility functions to manipulate data for BTT 
visual editors. BTT global functions are available in three BTT visual editors:

■ XUI ECA editor

■ Flow condition editor

■ Flow mapping editor

The following screen shot is the usage scenario of the BTT global functions in the 
XUI ECA editor.

The following table lists the pre-defined global functions provided by the BTT 
product.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 8 ■ Global Function Extension ■98
Category Function Name Description
Is 
Server 
Side

Is 
Client 
side

String 
Function

concat Concatenates two strings Y Y

length Returns the length of a string Y Y

contains Returns whether a string is part of another

string

Y Y

subString Returns a portion of a string Y Y

indexOf Returns the position of a substring Y Y

lastIndexOf Returns the position of a substring starting from 
the end

Y Y

replace Replaces all occurrences of a substring in a string 
with a new value

Y Y

trim Removes the leading and trailing blanks Y Y

upperCase Converts a string to its upper case Y Y

lowerCase Converts a string to its lower case Y Y

compare Compares two strings lexicographically. Returns 
0 if string1 is the same as string2, returns 1 if 
string1 is after string2, returns -1 if string1 is 
before string2 in dictionary order

Y Y

compareIgnoreCase Compares two strings lexicographically, ignoring 
case differences. Returns 0 if string1 is the same 
as string2, returns 1 if string1 is after string2, 
returns -1 if string1 is before string2 in dictionary 
order

Y Y

Number 
Function

round Returns the closest long or integer value to a 
number

Y Y

truncate Returns the truncated value of a number Y Y

absolute Returns the absolute value of a number Y Y

numberToString Returns value in string format Y N

parseNumber Returns a number parsing from a string Y N
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 8 ■ Global Function Extension ■ 99
Infrastructure developers could extend the BTT global functions to implement 
application specific utilities, such as function of converting a String to its lower case 
or upper case.

Date 
Function

today Returns the current date Y Y

dayOfWeek Returns the day of the week in number Y Y

year returns the year of the day in number Y Y

month Returns the month of the day in number Y Y

day Returns the date of the day in number Y Y

after Returns the date which is after than a given date 
with specified (days, months, years) period

Y Y

Before Returns the date which is before than a given 
date with specified (days, months, years) period

Y Y

daysBetween Returns the days between the two dates in 
decimal as time in day is taken into account

Y Y

natureDaysBetween Returns the nature days between the two dates 
ignoring time difference

Y Y

parseDate Returns date in BTT Date type, 'pattern' 
argument defines the format (such as 
'dd/MM/yyyy') of the date parameter

Y Y

Collection 
Function

tableSize Returns the number of elements in an 
IndexedCollection

Y N

tableAdd Adds the (numeric) values of a given column in 
an IndexedCollection

Y N

getRowByIndex Returns the element of the given 
IndexedCollection according to the index

Y N
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 8 ■ Global Function Extension ■ Extend global functions100
Extend global functions
The following figure shows the steps for extending BTT global functions.

Implement global functions
If a function is expected to run on the client side, the function should be 
implemented using the JavaScript language. If a function is expected run on the 
server side, the function should be implemented using the Java language. At the 
same time, the function should be declared as public and static method.

The following code sample demonstrates how to implement a global function for 
server side.

The following code sample demonstrates how to implement a global function for 
the client side.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 8 ■ Global Function Extension ■ Extend global functions 101
Describe global functions in xml
A global function should be described by an xml file before the BTT tools can show 
it in the visual editors.

functions tag

It contains one or more function tag.

function tag

The tag describes a function signature. It may contain parameter tags. The 
following is list of the attributes of a function tag.

Attribute Name Description

name The name of the function. It should be unique in a file.

returnType The return type of the function such as String, Date, Number 
and Boolean.

Description The description of the function. The description will be 
shown in visual editor tool when mouse hovers on the 
function.

The attribute value supports NLS when it starts with ‘%’.

isServer Indicates whether the function can be used on server side or 
not. When it is false, the function will not be shown in 
transaction editors. Default value: true

isClient Indicates whether the function can be used on client or not. 
When it is false, the function will not be shown in XUI editor

Default value: true
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 8 ■ Global Function Extension ■ Extend global functions102
parameter tag

The tag describes a parameter of a function. The following is the list of the 
attributes of a parameter tag.

The following is an example of global function definition.

Register for tooling
To enable the extended global functions being shown in the BTT visual editors, 
Infrastructure developers need to register the functions as a BTT plug-in extension:

1 Open plugin.xml file

2 Click the Extensions tab.

3 Click Add

4 In the field Extension Point Filter, type com.ibm.btt.

5 Click com.ibm.btt.tools.common.globalFunctions.

6 Click Finish.

Attribute Name Description

name The name of the parameter which will be shown in visual 
editors.

description The description of the parameter. It supports NLS when it 
starts with %.

type The data type of the parameter such as String, Date, Number 
and Boolean
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 8 ■ Global Function Extension ■ Extend global functions 103
7 Right click com.ibm.btt.tools.common.globalFunctions then click 
New > function.

■ In the Extension Element Details dialog box, type the applicable 
information.

■ name field requires users to input the name of the functions group.

■ config field requires users to provide the definition file described in 
‘Describe global functions in xml’ on page 101.

■ label field requires users to input a display name for the functions group 
which will be displayed in BTT visual editors.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 8 ■ Global Function Extension ■ Extend global functions104
Register for runtime
For the global functions of the server side, the implementation class should be 
registered into the BTT global definition file (btt.xml). Then the BTT tools know 
how to invoke a defined global function at runtime.

Search for globalFunctions in btt.xml, and then add a new entry for the 
extended global function. The attribute id should be equal to the name registered 
in the BTT plug-in extension, and the value should be the function implementation 
class. The following snippet in bold is an example of function registering:

<kColl id="globalFunctions">
<field id="BTTStringFunctions" value="com.ibm.btt.utils.GlobalFunctions" />
<field id="BTTDateFunctions" value="com.ibm.btt.utils.GlobalFunctions" />
<field id="BTTNumberFunctions" value="com.ibm.btt.utils.GlobalFunctions" />
<field id="BTTCollectionFunctions" 

value="com.ibm.btt.utils.GlobalFunctions" />
<field id="ExtensionFunctions"

value="com.ibm.btt.alphasample.drop3.globalfunction.ExtendFunctions" />
</kColl>

For the client side, global functions are mapped into the related JavaScript object 
automatically. The object name of the JavaScript implementation should be equal 
to the name registered in the BTT plug-in extension.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 8 ■ Global Function Extension ■ Global Function Extension Sample 105
Global Function Extension Sample
An extension sample of the global function is provided to demonstrate how to 
extend the BTT global functions. In this sample, two functions for the server side 
and three functions for the client side are provided. The following is the list of the 
extended functions:

■ Server side:

■ toLowerCase: convert a String into lowercase.

■ toUpperCase: convert a String into uppercase

■ Client side:

■ toLowerCase: convert a String into lowercase

■ isNull: check if a object has a value

■ isNumber: check if a String can be converted into number

A runnable sample is also provided to show the result of applying the extended 
global functions on both the client and server side.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 8 ■ Global Function Extension ■ Global Function Extension Sample106
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



107

CHAPTER 9
Chapter 9 Generated JS File Name 
Extension
When selecting an XUI file to generate a Dojo page, if the XUI file contains ECA 
rule definitions, BTT will generate a Javascript file. The file is the Javascript 
implementation for the defined ECA rule. By default, BTT will create the file with 
the same name of the XUI file, just change suffix from .xuito .js. For example, if the 
XUI file name is index.xui, the generated JavaScript file name will be index.js. BTT 
provides an extendible point for convenience of Infrastructure developers to 
change the default naming behavior. For example, Infrastructure developers can 
add version information into the generated js file name.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 9 ■ Generated JS File Name Extension ■ Extend generated JS file naming rule108
Extend generated JS file naming rule

Implement naming rule
BTT provides three APIs for extending the default naming rule. Infrastructure 
developers need to implement 
com.ibm.btt.tools.xui.editor2.generatorGenerateUIHandler interface or 
extend the BTT default implementation class to implement the expected JS file 
naming behavior. The following is description of the three APIs.

The following is a sample implementation.

Register implementation
The following describes how Infrastructure developers register the JS file naming 
rule. 

1 Open plugin.xml file of BTT extension plug-in project.

2 Click the Extensions tab.

3 Click Add.

4 In the field Extension Point Filter, type com.ibm.btt.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 9 ■ Generated JS File Name Extension ■ Extend generated JS file naming rule 109
5 Click com.ibm.btt.tools.xui.editor2.generator.

6 Click Finish.

7 Right click com.ibm.btt.tools.xui.editor2.generator then click 
New > uiGenHandler.

8 In Extension Element Details dialog box, type the applicable information.

■ name field requires the user to input name of the naming rule.

■ class field requires the user to input implementation class of extended 
naming rule described in ‘Implement naming rule’ on page 108.

■ priority field requires the user input the priority of this extension. If the 
extension point is registered by multiple plug-ins, the higher priority 
extension will be invoked by BTT. BTT default naming rule is registered as 
low priority. So the customized JS file naming rule should be registered as 
medium or high priority.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 9 ■ Generated JS File Name Extension ■ Extend generated JS file naming rule110
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



111

CHAPTER 10
Chapter 10 Naming Conventions 
Extension
When creating an element with the BTT visual tooling, the element name or ID 
starts with a default prefix. For example, when dragging a label widget onto canvas 
using the BTT XUI editor, the ID of new created label will start with label by 
default. Infrastructure developers can customize default BTT naming conventions 
to comply with their project naming specification, such as operations start with op, 
formatters start with fmt. Furthermore, naming validators can also be customized to 
validate if the created elements comply with the naming conventions.

Customized naming conventions can be applied to the following BTT elements:

Transaction Editor
■ name of Transaction file

■ ID of Processor

■ ID of Operation

■ ID of Operation step

■ ID of Context

■ ID of data, field, iColl, kColl, bColl

■ ID of formatter

■ ID of service

XUI Editor
■ Name of XUI file

■ ID of widget

■ ID of ECA rule

Customized naming conventions can be applied in two levels:

■ Project level: The naming conventions are applied to specific project.

■ System level: The naming conventions are applied to all projects in workspace.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 10 ■ Naming Conventions Extension ■ Extend naming conventions112
Extend naming conventions
There are two ways of customizing BTT name conventions:

■ Extend by registering new naming convention rule.

■ Extend by registering new naming manager class.

Extend rule by registering new naming convention rule

Overview BTT provides a naming convention rule for Infrastructure developers to customize 
simple naming conventions without coding.

A rule is in the format of elementRuleID=[prefix]{variable}[suffix].

■ elementRuleID: is the rule ID of element supporting customized naming 
conventions.

■ prefix: can be 0 or n number of characters.

■ variable: can be 0 or n number of predefined variables can be referenced by 
naming convention rule.

■ suffix: can be 0 or n number of characters. 

Below is an example of naming convention rule:

FILE_TRANSACTION=newTransaction{file_count}.transaction

The following tables list BTT elements, and their naming convention rule IDs.

Transaction Editor elements

Elements ID

Transaction file name FILE_TRANSACTION

Processor ID Processor

Operation ID operation

Operation step ID opStep

Context ID context

Data ID data

Field ID field

Indexed Collection ID iColl

Keyed Collection ID kColl

Bean Collection ID bColl

Formatter ID fmtDef

Service ID service
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 10 ■ Naming Conventions Extension ■ Extend naming conventions 113
XUI Editor elements

Predefined variables

The following table lists predefined variables that can be referred to by the naming 
convention rule:

Create naming conversion rule

A rule can be applied either in system level or project level.

1 Customize naming convention rule at system level

a Creating new bundler file with extension properties in plug-in project, for   
example: namingextension.properties.

Elements ID

XUI file name FILE_XUI

Widget ID ELEMENT_WIDGET

ECA rule ID ELEMENT_ECA_RULE

Variable Description

file_count Returns count of files applied the rule in current project.

file_name Returns the file name

widget_type Returns widget type string of the widget in XUI editor.

widget_count Returns count of widgets applied the rule in current XUI file.

rule_count Returns the count of ECA rule applied in current XUI file.

impl_class Returns the implementation class name of a transaction element. 
For example, an implement class name of an Operation object.

oper_count Returns the count of operations applied the rule in current 
transaction file.

op_step_count Returns the count of operation steps applied the rule in current 
transaction file

ctx_count Returns the count of Context in current transaction file.

item_count Returns the count of elements with the same type in Data section 
of current transaction file.

fmt_count Returns the count of formatter in current transaction file.

service_name Return the service name of a service object. The object can 
be normal service or web service object. 

For web service, will return port name 

For normal service, will return implement class name

service_count Return the count of service applied the rule in current transaction 
file.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 10 ■ Naming Conventions Extension ■ Extend naming conventions114
b Edit the naming convention rule in the file. The following is a example of 
naming convention rule file:

c Open plugin.xml.

d Click the Extensions tab.

e Click Add.

f Click com.ibm.btt.tools.common.naming.

g Click Finish.

h Right-click com.ibm.btt.tools.common.naming then click New > rule.

i In the Extension Element Details dialog box, type the applicable 
information.

■ Bundle field requires the user to input the path of bundle file created in 
step 1.

Note Do not include the extension name properties in the bundle attribute

■ Priority field requires the user input the priority of this extension. If the 
extension point is registered by multiple plug-ins, the higher priority 
extension will be invoked by BTT. The BTT default naming convention 
rule is registered as low priority. The customized naming convention rule 
should be registered as medium or high priority.

2 Customize naming convention rule at project level

a Add a properties file under the project root path with the file name 
naming_convention.properties.

b The file content is similar as the bundle file described in ‘Customize 
naming convention rule at system level’ on page 113.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 10 ■ Naming Conventions Extension ■ Extend naming conventions 115
Add new Variable

Infrastructure developers can create new variable and use it in a naming 
convention rule. The following steps describe how to create a new variable.

1 Implement the 
com.ibm.btt.tools.common.naming.variable.IVariableGenerator’ 
interface. The following is description of IVariableGenerator:
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 10 ■ Naming Conventions Extension ■ Extend naming conventions116
2 Register the variable generator

a Right click extension point com.ibm.btt.tools.common.naming then 
click New > variable_generator.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 10 ■ Naming Conventions Extension ■ Extend naming conventions 117
b In the Extension Element Details, type the applicable information.

i ID: The ID will be used in naming convention rule. For example, the 
new variable's ID is file_count.

ii Generator: The implementation class of variable generator.

iii FirstChar: Indicates if need to change first character and how to 
change the first character.

Extend by registering new naming manager class
Infrastructure developers can have the full capability of naming BTT elements at 
the time they are created. On the other hand, Infrastructure developers have to 
implement from scratch and cannot leverage existing BTT implementation in 
naming. The following steps describes how to implement and register a new 
naming manger class.

Implement naming manager

BTT provides APIs for extending BTT naming convention from scratch. 
Infrastructure developers need to implement 
com.ibm.btt.tools.common.naming.INamingManager interface. The following 
is description of INamingManager:
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 10 ■ Naming Conventions Extension ■ Extend naming conventions118
Register naming manager

1 Open plugin.xml file of BTT extension plug-in project

2 Click the Extensions tab.

3 Click Add.

4 In the field Extension Point Filter, type com.ibm.btt.

5 Click com.ibm.btt.tools.common.naming.

6 Click Finish.

7 Right click com.ibm.btt.tools.common.naming then click New > manager.

8 In the Extension Element Details dialog box, type the applicable 
information.

■ Class field requires the user to input implementation class of naming 
manager described previously.

■ Priority field requires the user input the priority of this extension. If the 
extension point is registered by multiple plug-ins, the higher priority 
extension will be invoked by BTT. BTT default naming manager is 
registered as low priority. So the customized naming manager should be 
registered as medium or high priority.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 10 ■ Naming Conventions Extension ■ Extend naming conventions 119
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 10 ■ Naming Conventions Extension ■ Extend naming conventions120
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



121

CHAPTER 11
Chapter 11 Multi-project Support in 
Extension
For a banking customer, it possibly has multiple channel applications, such as teller 
banking, internet private banking, corporate banking and etc. These applications 
may be required to share some common business logic or resources such as 
operations and flows, NLS files or image files. At development time, the 
applications are organized as multiple projects in RAD. BTT tooling supports 
referring to resources in a project from other projects. For example, developers can 
choose NLS definition from one project for a widget of another project. The BTT 
multi-project feature improves the maintainability of the application code, 
flexibility of project management and avoids code redundancy. Also it improves 
the runtime flexibility by hot deployment capability. For example, business logic in 
shared sub-flows or web resources like images or the CSS has been changed, 
administrators only need to re-deploy the shared EAR, the base business-specific 
application EAR does not need to be restarted.

The types of multiple projects:

■ Global Web Project: the project contains web resources which are shared 
hierarchically with other global, common and local projects. In Global web 
projects, there are the following web resources types

■ NLS

■ CSS

■ Static Lists (for combos and selection)

■ Images

■ Dojo JS(include Dojo base, BTT Dojo and application extended widgets)

■ Global Java Project: the project contains components which are shared 
hierarchically with other global, common and local projects. In Global java 
projects, there are the following web resources types

■ BTT Global Definitions XML (btt.xml, context, data, type, service etc.)

■ Common Java project: the project contains self-defined operations generated 
by WS import wizard. These operations are then reused by other common and 
local projects. Typical resources contained in a common project are:

■ Self-defined operation
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 11 ■ Multi-project Support in Extension ■122
■ Self-defined flow processor without views

■ Common Web Project: the project contains sub page flows which are shared 
by local projects. The common web project are self-contained that means it has 
self-defined flows and needs to initialize btt.xml in the BTT startup servlet. In 
Global java projects, there are the following web resources types

■ Self-defined sub-flow with views

■ Local project: the local project is application web project and does not share 
any component with other projects. It refers shared components from global 
and common projects. Local project has business-specific logic implemented by 
page flow and operations that cannot be shared. As best practice, in local 
projects, the data/type is not defined, it uses the data defined in the global java 
project.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 11 ■ Multi-project Support in Extension ■ Handle project prefix 123
Handle project prefix
In the BTT tooling, the following resources can be chosen from another project:

1 NLS definition

2 Image file,

3 Context definition

4 Data name in a context,

5 CSS file

6 List file

7 Flow

8 Operation

At time of generating JSP from XUI, the value of a widget attribute needs to be 
generated into runtime value properly.

The following mapping rules handle multi-project for widget attributes specially:

■ remoteNLSPathRule: which handles NLS String for multi-project.

■ changePathRule: which handles List file for multi-project.

■ remotePathRule: which handles Operation for multi-project

■ checkDataNameRule: which handles Data name for multi-project

■ changePathRule: which handles Image file for multi-project

When a resource is selected from another project, BTT will add a project prefix to 
the resource reference information. In this case, resource reference information will 
be in the format of [project prefix]:[resource reference identity]. In 
order to avoid large modification when a common or global project is renamed, 
BTT uses a project map key instead of a project name as a project prefix.

The common or global projects information is defined in the BTT configuration file 
as remoteProjectURL kColl of the local project. For each entry, the id field is the 
project name, the description field is the project map key and the value field is 
the access information at runtime. The following is a sample of the map key 
definition:

For an extended widget, if its attribute refers to a resource in another project, the 
widget implementation needs to handle the project prefix to locate the resource. 
BTT provides two APIs for Technical developers to handle the project prefix.

■ IProject FilePathUtil.getProjecByResourceID(String resourceID, 
IProject activeProject)
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 11 ■ Multi-project Support in Extension ■ Handle project prefix124
The API returns the project in which the resource is located according to the 
resourceID. If resourceID does not contain a project prefix, the activeProject 
will be returned. If the project map key is not defined in the BTT configuration file, 
an IllegalArgumentException exception will be thrown.

■ String FilePathUtil.getValueByResourceID(String resourceID) 

The API returns the resource without project prefix.

The following sample code demonstrates how to retrieve an icon file from a global 
project.

try{

IProject imageProject =
FilePathUtil.getProjecByResourceID(imageLocation,

EditorUtils.getActiveProject());
String imageRelativeLocation = FilePathUtil.getValueByResourceID(imageLocation);
IFile imageFile = imageProject.getFile(imageRelativeLocation);
}
catch(IllegalArgumentException ie){

// handle map key is not defined exception
}

The following sample code demonstrates how to retrieve a NLS definition from a 
global project.

try{
IProject selectedProject = FilePathUtil.getProjecByResourceID(nlsLocation,

EditorUtils.getActiveProject());
String nlsTextField = getValueByResourceID(nlsLocation);
String nlsValue = NLSUtils.getPropertiesValue(nlsTextField,selectedProject);

catch(IllegalArgumentException ie){
// handle map key is not defined exception

}

MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



125

CHAPTER 12
Chapter 12 Pagination Extension
If a grid contains massive data, it will be an expensive operation to retrieve all data 
at once. Because the operation will consume a large amount of memory and 
network bandwidth to store and transfer the data. BTT provides pagination support 
on both the browser side and the server side. Large amounts of data can be 
separated into multiple parts, and each part can be retrieved at different time.

If the isPageable attribute of a grid widget is selected as true, the BTT pagination 
function will be enabled, and grid attributes for pagination are required for 
definition.

At runtime, when one of pagination widgets is selected in a browser, an Ajax 
pagination request will be sent to the server side. And then the BTT server 
operation will retrieve the data according to the pagination parameter and send it 
back to the browser.

On the server side, BTT invokes two server operations to handle a pagination 
request:

■ Technical pagination operation

Technical pagination operation is implemented by the BTT product or 
Technical application developers. The operation is responsible for:

■ Retrieving and handling pagination parameters from request.

■ Chaining business operation context to processor context.

■ Invoking business pagination operation

■ Mapping data between business operation context and processor context

■ Handling exception

■ Business pagination operation

Business pagination operation is implemented by Functional application 
developers. The operation retrieves business data according to the pagination 
parameters.

The following diagram demonstrates the relationship between the technical 
pagination operation and business pagination operation.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 12 ■ Pagination Extension ■126
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 12 ■ Pagination Extension ■ Extend technical pagination operation 127
Extend technical pagination operation
The technical pagination operation is responsible for handling pagination 
parameters, such as rows per page and total page number. BTT provides a default 
technical pagination operation to handle the parameters. The application may have 
a requirement to handle application specific pagination behavior. Technical 
developers possibly need to implement a customized technical pagination 
operation.

The customized technical pagination operation needs to extend the class 
com.ibm.btt.cs.ajax.AbstractPaginationOp. The following diagram shows 
class hierarchy of technical pagination operation.

The customized technical pagination operation needs to override the following 
methods:

1 beforeExecutionBizOp

2 handleBizOpInputMapping

3 handleBizOpOutputMapping
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 12 ■ Pagination Extension ■ Extend technical pagination operation128
4 afterExecuteBizOp

5 handleException
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 12 ■ Pagination Extension ■ Pagination parameters 129
Pagination parameters
On the server side, when the BTT request handler receives a pagination request 
from the browser, it will parse the pagination parameters from the request and store 
the parameters in the operation context of the technical pagination operation. The 
technical pagination operation can use the parameters to do pagination correctly. 
Technical pagination operation context has three data parts:

■ tableProperties

Contains the pagination attributes of the pagination table.

■ pageRequest

Contains the control parameters of pagination

■ pageReply

Contains the data and control parameters after pagination request is processed.

Field name Description

tableId The id of table defined in XUI

dataName The dataName attribute defined in table

dataNameForList dataNameForList attribute defined in table

rowsPerPage rowsPerPage attribute defined in table

operationNameForPagination operationNameForPagination attribute 
defined in table

directPagination directPagination attribute defined in table

tableColumnIDs dataName list of each column in table. Each 
dataName is separated by comma, for 
example {name1, name2, name3}

Field name Description

pageEvent The event that triggers pagination request. The possible value can 
be ‘initial’, ‘next’, ‘prev’, ‘page’.

pageNumber Page number to be requested

sortData

customData The reserved field for extension usage

Field name Description

totalRowNumber The total row number of data

enableNext Will Next icon in client be enabled

enablePrevious Will Previous icon in client be enabled

errMsg Error message to be shown on client 
when exception occurs
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 12 ■ Pagination Extension ■ Pagination parameters130
items Business data is retrieved

customData The reserved field for extension usage

Field name Description
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 12 ■ Pagination Extension ■ Register customized technical pagination operation 131
Register customized technical pagination operation
After a customized technical pagination operation is implemented, technical 
developers need to register the operation so Functional developers can choose the 
operation in the XUI editor.

The following steps describe how to add a new technical pagination operation:

1 Open btt.xml, and click the Settings tab.

2 Right click directPaginationType or indirectPaginationtype then click 
Add SubField > Field Field

3 In the Detail Information area type: 
Id: the unique Id of the operation value: the class of the operation. 
description: the description of the operation.

4 Click Save.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 12 ■ Pagination Extension ■ Register customized technical pagination operation132
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



133

CHAPTER 13
Chapter 13 Client State Extension
In a banking application project, there are some common usage scenarios to 
execute the client side operation from flow. Especially, for a web channel 
application, BTT supports the capability to interact with the UI feedback from the 
thin client (browser) in AJAX style.

For example in a BTT web channel application, sometimes we need:

■ To pop-up a window dialog for implicit flow requirement to:

■ Close flow

■ Retry or close flow

■ Display a warning message and a button to continue

■ Go to the previous page

■ Go to the previous page or close flow

■ Super-user approval

■ Devices control

■ Call client side applications such as TP16 or TP32 existing transaction.

For these requirements, BTT has provided a kind of abstract state called client 
state. Meanwhile, there is a default client state implementation for the model pop-
up dialog in the BTT product. A more detailed introduction about the client state 
can be found in the product document.

For customer specific scenarios, alpha developers could implement their 
customized client state such as device control or override. To implement a 
customized client state, Infrastructure developers can follow the four steps 
described below.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 13 ■ Client State Extension ■ Step 1: Extend a Client State134
Step 1: Extend a Client State
Client state is an abstract state class which defines the general behaviors for client 
interaction. In the BTT product, there is a default implementation of the client state 
called PopupPageClientState. Alpha developers always need to customize the 
client state to fulfill the usage scenarios.

Implement state class
The BTT product has provided an abstract class named 
com.ibm.btt.automaton.ext.ClientState to facilitate the alpha extension. 
This class is extended from the class of page state 
com.ibm.btt.automaton.html.DSEHtmlState. Alpha developers can focus 
more on the logics of client interaction and pay less attention on common state 
methods like initializeFrom.

In the extension usage scenario, there are four methods may be commonly 
extended by alpha developers in the application:

■ protected abstract String getCommand(): 
This method returns the command of behavior which will be brought to the 
client side. For instance, a extended Client State used for printing forms may 
return a command like fromPrint. The JavaScript handlers registered for 
command fromPrint will be invoked. It is the required method to be 
implemented.

■ protected void afterFirstExecute(): 
Client State will be executed twice during the flow execution. Once is when it is 
activated and gives a response to a client request; the second time when it 
handles a client response after the execution of the client logic and moves to 
the next state of the flow. Alpha developers could add extra logic for the server 
side in this method.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 13 ■ Client State Extension ■ Step 1: Extend a Client State 135
■ protected void addRequiredDataToContext(Context context): 
This method can be overridden to add or remove data which may be brought 
to client side. If you need to render or pop-up a page, you should set the value 
for the reply page as shown in the code snippet below.

Otherwise, if you are going to implement your own logic instead of page 
rendering, you can just leverage the implementation of the super class like the 
code snippet below.

■ public String generateClientResponse(): 
This method is used to convert the server data to JSON message and send them 
back to the client side. In the implementation of the class 
com.ibm.btt.automaton.ext.ClientState, all the flow context data will be 
formatted into JSON as response data. Alpha developers could override this 
method to filter the response data.

Register the implementation class into btt.xml
To make the extended state class available during runtime, alpha developers 
should register it into the btt.xml of target application. You need to open the 
btt.xml in your application project, and move to the processor tab. Then, you can 
register your extended state class in the class table of processors. See the following 
screen shot.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 13 ■ Client State Extension ■ Step 2: Enable the extended State in Transaction Editor136
Step 2: Enable the extended State in Transaction 
Editor

For more information about how to enable an extended state available in the 
Transaction Editor, see ‘Process Editor Extension’ on page 79. Also, this chapter 
explores how to enable the extended client state in the Transaction Editor step by 
step.

Create configuration file for the extended client state
Just like the extension steps for a state, alpha developers should define it with an 
xml file. To define a state for the palette, there are three kinds of tags will be used:

■ appearance. This tag is used to indicate the appearance of the state shown in 
the palette. For example, we can control the font style with the attribute font.

■ properties. This tag is used to group the property tags.

■ property. This tag is used to describe the property for Transaction Editor 
about how to display, what is the default value or extra generation rule.

The code snippet below shows a sample of the configuration file for extended client 
state:

Register extended client state into the palette
To make sure the extended state could be chosen from the palette and dragged into 
flow canvas, alpha developers also need to register it in the Eclipse extension point 
of palette. For that, you can follow the steps below.

1 Open the plugin.xml in your plug-in project.

2 Click the Extensions tab.

3 Click Add.

4 In Extension Point Filter field, type com.ibm.btt.

5 Click com.ibm.btt.tools.transaction.dominate.palette.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 13 ■ Client State Extension ■ Step 2: Enable the extended State in Transaction Editor 137
6 Click Finish.

7 Right click com.ibm.btt.tools.transaction.dominate.palette then click 
New > state to create the applicable object.

8 Click Finish.

9 In Extension Element Details dialog box, type the applicable information.

Note For the attribute config, alpha developers should browse the workspace 
to choose the definition file we defined already. For the attribute 
stateParser, you can just choose PageStateParser provided by BTT 
product for your extended Client State.

You can now use the extended state in the Transaction Editor. The screen shot 
below shows the result view. You can find more detailed introduction about this 
part in the ‘Process Editor Extension’ on page 79.

Create configuration file for mapping rules
In most scenarios, alpha developers need to inject some extra generation rules into 
the Transaction Editor. To fulfill this requirement, alpha developers need to create 
a xml file in the plug-in project to define the mapping rules.

There are two kinds of tags commonly used in rules definition:
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 13 ■ Client State Extension ■ Step 2: Enable the extended State in Transaction Editor138
■ tag-mapping. This tag is used to indicate the conversion rules between the tags 
used in transaction file (the value of attribute from) and the ones in the 
generated xml file (the value of attribute to).

■ property-mapping. This tag is used to indicate the conversion rule between 
the attributes in transaction file (the value of attribute from) and the ones in the 
generated xml file (the value of attribute to).

Alpha developers could assign a more complex property generation rule with the 
attribute rule, which references to some program logic. The BTT product has 
provided several rule implementations and developers could also implement and 
register their own property generation rules. You can find more detailed 
information about his topic in ‘Process Editor Extension’ on page 79

Register mapping rules
To make the mapping rules work in the Transaction Editor, alpha developers 
should register it with an Eclipse plug-in extension following the steps below:

1 Open the plugin.xml of your plug-in project.

2 Click the Extension tab

3 Click Add.

4 In Extension Point Filter field, type com.ibm.btt.

5 Click com.ibm.btt.tools.transaction.editor.generator.

6 Click Finish.

7 Right click com.ibm.btt.tools.transaction.editor.generator then click 
New > mapping.

8 In Extension Element Details dialog, type the applicable information.

■ file: browse to locate the xml file defined above.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 13 ■ Client State Extension ■ Step 2: Enable the extended State in Transaction Editor 139
■ target: the name of currently used transaction generator should be input as 
its value.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 13 ■ Client State Extension ■ Step 3: Extend navigation engine to register command handler140
Step 3: Extend navigation engine to register 
command handler

After the client state is activated in the server side, a command will be added into 
the response data and sent back to the client side. Then the navigation engine will 
invoke different target command handlers to handle the related command in the 
reply data.

In order to correctly respond to the command and invoke the associated client 
operation logic, alpha developers should extend the navigation engine of the BTT 
product and register their own command handlers.

Extend the navigation engine to register a command handler
The navigation engine provided by BTT product is located in the file 
NavagationEngine.js. In this JS library file there is a function named postCreate, 
which will be invoked after the engine is created and all the widgets loaded for the 
first time. The extended command should be registered in this method as the code 
snippet below.

Alpha developers should extend the NavigationEngine of the product code, and 
then override the function postCreate

Alpha developers should then define their command handlers which will be 
invoked by the navigation engine. The following code shows a sample of device 
control, which will invoke the printer to print current form. You can find more 
sample handlers in the sample project.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 13 ■ Client State Extension ■ Step 3: Extend navigation engine to register command handler 141
Finally, alpha developers should register the handlers defined above in the 
extended navigation engine. This is the same as the code style of the navigation 
engine of the BTT product.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 13 ■ Client State Extension ■ Step 4: Add the reference of new navigation engine to template142
Step 4: Add the reference of new navigation engine 
to template

Alpha developers should modify the JS template of their BTT project. The 
following code snippet should be added to the end of the script section. After that, 
the XUI files should be generated again with the new template to make sure the 
extended engine and command handler would take effect at runtime.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



143

CHAPTER 14
Chapter 14 Reference Sample Topics
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 14 ■ Reference Sample Topics ■ How to extend a global function invoked in ECA action144
How to extend a global function invoked in ECA 
action

For the XUI editor, global functions could be invoked both in the Expression Panel 
and the Action Panel. In this reference sample, Infrastructure developers will be 
guided to extend a global function used in the ECA Action. The purpose of this 
function is to disable a widget in a browser.

Define global function in XML
1 Create a new plug-in project or use the already existing one (see ‘Plug-in 

Project Setup’ on page 14).

2 Create a new folder under the project; for example, name it as globalFunctions.

3 Create an xml file under the folder; for example, name it as 
ExtendedGlobalFunction.xml.

4 Edit the file to define a global function. Notice that, the attribute 
showInAction should be set to true to indicate this function will be available 
in the Action panel of XUI ECA editor.

Register global function definition as Eclipse extension
1 Open the plugin.xml.

2 Click the Extension tab.

3 Click Add.

4 In Extension Point Filter field, type global.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 14 ■ Reference Sample Topics ■ How to extend a global function invoked in ECA action 145
5 Click Finish.

6 In Extension Element Details dialog, type the applicable information.

■ name. This value is the identifier of this extension.

■ config. Click Browse to find the configuration file defined in previous 
steps.

■ label. This value will be shown as the name of global functions group.

Implement JavaScript for global function
For global functions running in the browser side, Infrastructure developers should 
prepare a piece of JavaScript snippet. In this sample, the implementation code is 
used to disable a widget in a dojo page. 
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 14 ■ Reference Sample Topics ■ How to extend a global function invoked in ECA action146
Enable XUI editor aware of this global function
Here are two steps for Infrastructure developers to make the XUI editor aware of 
this global function:

1 Put the JavaScript code under the WebContent folder of the runtime project. 
For this sample, the folder structure is like the following screen shot.

2 Modify the temple of XUI editor to make sure the implementation code of 
global function will be referenced by the generated JSP page.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 14 ■ Reference Sample Topics ■ How to extend a global function to manipulate collection data 147
How to extend a global function to manipulate 
collection data

When composing a flow, sometimes it is necessary to manipulate the collection 
data contained in an indexed collection. For example, customers may have several 
accounts and each account has a balance. The account summary view need to 
present the sum of the balances of all accounts. In this topic, Infrastructure 
developers will be guided to fulfill this job by extending a global function.

Define global function in XML
1 Create a new plug-in project or use the already existing one.

2 Create a new folder under the project; for example, name it as 
CEGlobalFunctions.

3 Create an xml file under the folder; for example, name it as 
BTTWildCardFunctions.xml.

4 Define the signature of global function. 

Note The type of the input parameter should be set as Array to enable the 
property editor used for collection data manipulation.

Register global function definition
1 Open plugin.xml.

2 Click the Extension tab.

3 Click Add.

4 In Extension Point Filter field, type global.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 14 ■ Reference Sample Topics ■ How to extend a global function to manipulate collection data148
5 Click Finish.

6 In Extension Element Details dialog, type the applicable information.

■ name. This value is the identifier of this extension.

■ config. Click Browse to find the configuration file defined in previous 
steps.

■ label. This value will be shown as the name of global functions group.

Implement the function logic to calculate the sum of account 
balance

To calculate the sum of the account balances, the global function takes a value 
array of account balances as its parameter, and returns the calculated sum.

Note that, the global function does not take IColl data as its parameter. BTT will 
automatically transform the specified IColl.*.Balance to an array of String 
values by using the instance toString() method. It is necessary to make sure the 
instances stored in IColl.*.Balance can be transformed into valid String values 
with the toString() method. The values can be transformed back to their original 
instance type.
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 14 ■ Reference Sample Topics ■ How to extend a global function to manipulate collection data 149
Register the implementation class of global function
In this sample, it is supposed that the extended global function is located in the 
class com.ibm.btt.test.WildCardFunctions. For the server-side global 
functions, Infrastructure developers should register the implementation class in 
btt.xml.

Usage Scenario of the global function in mapping editor
This section shows how to use the extended global function in the mapping editor. 
Note that, the parameter type is Array and the selected value for the parameter will 
be like accountList.*.accountBalance.

And finally, here is the generated XML snippet:
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE



CHAPTER 14 ■ Reference Sample Topics ■ How to extend a global function to manipulate collection data150
MULTICHANNEL BANK TRANSFORMATION TOOLKIT EXTENSION DEVELOPMENT GUIDE





We welcome feedback on our documentation. Please email us at:

tech.authors@unicomsi.com

www.unicomsi.com

www.unicomglobal.com


	Contents
	About this manual
	Release levels
	Conventions

	BTT Overview
	Environment Preparation
	Plug-in Project Setup
	Runtime Project Setup

	Dojo Widget Extension
	Enable customized widget in XUI Editor
	Define a widget in xml file
	Display widget in XUI Editor
	Import widget
	Create widget mapping

	Enable customized widget in runtime
	Implement JSP tag handler
	Register JSP tag handler
	Dijit implementation
	JSP template

	Enable customized widget in preview mode
	Register JSP taglib
	Modify JSP template

	Advanced topics
	Customized Property Editor
	New Property Tab
	Customized Property Mapping Rule
	ECA support
	NLS support
	BTT Context data binding
	XUI Generation Template
	XUI page generation from BTT context data
	Change default behavior of XUI generation
	Extend Table Column Widget
	How to add version control on runtime NLS files


	Data Type Extension
	Implement data type extension
	Declare new data type
	Implement type validator
	Implement type converter

	Implement type presentation widget
	Data type extension sample

	Web Services Extension
	Web services Tool Extension
	ID Mapping during self-defined operation generation

	Web services Runtime Extension
	Web services Runtime Overview
	Extend WS Handler and WS Connector


	Channel Policy Management and Extension
	Channel level policy management
	Implement channel policy handler
	Define rule provider service
	Configure policy for channels
	Exception handling

	Operation level policy management
	Implement OpStep for operation level policy
	Configure operation

	Channel policy sample
	How to run the sample


	Process Editor Extension
	Extend processor editor object
	Create configuration file for palette object

	Processor editor extension sample
	ClientPromptState sample
	AlphHtmlProcessor sample


	Global Function Extension
	Extend global functions
	Implement global functions
	Describe global functions in xml
	Register for tooling
	Register for runtime

	Global Function Extension Sample

	Generated JS File Name Extension
	Extend generated JS file naming rule
	Implement naming rule
	Register implementation


	Naming Conventions Extension
	Extend naming conventions
	Extend rule by registering new naming convention rule
	Extend by registering new naming manager class


	Multi-project Support in Extension
	Handle project prefix

	Pagination Extension
	Extend technical pagination operation
	Pagination parameters
	Register customized technical pagination operation

	Client State Extension
	Step 1: Extend a Client State
	Implement state class
	Register the implementation class into btt.xml

	Step 2: Enable the extended State in Transaction Editor
	Create configuration file for the extended client state
	Register extended client state into the palette
	Create configuration file for mapping rules
	Register mapping rules

	Step 3: Extend navigation engine to register command handler
	Extend the navigation engine to register a command handler

	Step 4: Add the reference of new navigation engine to template

	Reference Sample Topics
	How to extend a global function invoked in ECA action
	Define global function in XML
	Register global function definition as Eclipse extension
	Implement JavaScript for global function
	Enable XUI editor aware of this global function

	How to extend a global function to manipulate collection data
	Define global function in XML
	Register global function definition
	Implement the function logic to calculate the sum of account balance
	Register the implementation class of global function
	Usage Scenario of the global function in mapping editor



